Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Научпоп » Самая сложная задача в мире. Ферма. Великая теорема Ферма - Luis Alvarez

Самая сложная задача в мире. Ферма. Великая теорема Ферма - Luis Alvarez

Читать онлайн Самая сложная задача в мире. Ферма. Великая теорема Ферма - Luis Alvarez

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 4 5 6 7 8 9 10 11 12 ... 29
Перейти на страницу:

Нерешенная проблема — как стена. Математики, которые подступаются к ней, должны обладать соответствующим арсеналом, чтобы снести ее. Некоторые задачи просто нельзя разбить с помощью примитивного "оружия". Точно так же, как римская катапульта была бы абсолютно бесполезна против современного авианосца, некоторые математические инструменты не годятся для решения определенных проблем, и ученым приходится ломать себе голову, изобретая новые стратегии атаки и новое вооружение. Современная история математики — это в значительной мере история изобретения более совершенного арсенала.

У Ферма было такое оружие, о котором одно или два предыдущих поколения даже не мечтали; но его было недостаточно, чтобы решить его задачу. С другой стороны, вполне вероятно, что он этого не знал. Возможно, тулузский юрист был ослеплен блеском стали того арсенала, который изобрел его выдающийся предшественник Виет, а также он сам, и не подозревал, что не все стены разрушаются под его ударами. Девизом Виета была фраза: Nullum problema solver ("Нет проблем без решений"). Сегодня оптимизм ученого можно назвать чрезмерным, но тогда никто этого не знал.

Математики используют в своих доказательствах не меньшее количество стратегий, чем полководцы в битве, а возможно, даже и большее. Во времена Ферма число стратегий значительно увеличилось с изобретением символической алгебры; одну из тех, что использовал Ферма, изобрел он сам: метод бесконечного спуска, который происходит из доказательства от противного. В общих словах данный метод заключается в том, чтобы принять за гипотезу тезис, противоречащий теореме, которую мы хотим доказать, и искать свойство, справедливое для заданного числа п. Затем доказывается, что если данное свойство справедливо для числа n, оно также справедливо для числа меньше n, как правило n - 1.

Но здесь возникает проблема! Если это так, то существует бесконечная последовательность натуральных чисел, каждый раз все меньших, а мы знаем, что это не так. Самое маленькое натуральное число равно 1. Таким образом, у нас есть противоречие, из которого следует, что наша гипотеза ошибочна.

Так Ферма доказал, что его знаменитая теорема истинна по крайней мере для частного случая, при n = 4, в записи, которая почти поместилась на другом поле той же самой "Арифметики" Диофанта. И мы говорим "почти", потому что Ферма опустил, как обычно, некоторые этапы доказательства.

Мало что еще можно сказать о работе Ферма над доказательством его легендарной теоремы, поскольку он практически больше ничего не оставил на эту тему; зато мы можем проследить ее судьбу в течение тех 350 лет, которые Ферма не мог увидеть.

ОТ ЭЙЛЕРА ДО СОФИ ЖЕРМЕН

Как уже было сказано, Великая теорема Ферма стала известна после его смерти. С другой стороны, теория чисел, над которой работал математик, не имела большого успеха среди его современников, так как они больше интересовались другими математическими проблемами того времени. Поэтому публикация комментариев Ферма к "Арифметике" Диофанта не имела большого резонанса. Ученые того времени не понимали его увлеченности этими "бессмысленными" задачками, которые казались больше похожими на загадки и головоломки, чем на важные математические проблемы.

ЛЕОНАРД ЭЙЛЕР

Швейцарский ученый Леонард Эйлер (1707-1783) был знаковой фигурой в математике XVIII века. Его работы посвящены практически всем областям математики, существовавшим в тот момент, а также разнообразным проблемам физики и ряда других наук.

Эйлер занимал выдающиеся должности в академиях наук России и Пруссии во время правления Екатерины Великой и Фридриха II, где он общался на равных с королями и мыслителями уровня Вольтера. Ученый был одноглазым и в конце концов полностью потерял зрение, но это не помешало ему каждую неделю писать по статье.

У него была чудесная память, которая позволяла ему доказывать теоремы в уме, а также без проблем читать наизусть"Энеиду" от начала и до конца. Рассказывают, что когда Екатерине надоели атеистические рассуждения Дидро, она попросила Эйлера унизить его публично. Тот подошел к философу и выпалил:

"(a+bn)/n = х, следовательно, Бог существует. Отвечайте!"

Дидро не знал, что ответить. Однако некоторые историки сомневаются в истинности этой истории. Также Эйлеру принадлежит одна из самых красивых формул в математике: еn + 1 = 0.

Однако прусский математик Христиан Гольдбах (1690- 1764; что любопытно, он знаменит благодаря своей до сих пор не доказанной гипотезе, не сильно отличающейся от задач, которыми занимался Ферма) начал изучать работы Ферма и привлек к ним внимание самого великого математика своего времени. Этим математиком, родившимся примерно через 40 лет после смерти Ферма, был Леонард Эйлер.

СОФИ ЖЕРМЕН

Как и все женщины-ученые, жившие до XX века, парижский математик Софи Жермен (1776-1831) столкнулась со множеством проблем в своей научной карьере. Она не получила официального образования и пользовалась для учебы записками Политехнической школы. Софи также переписывалась с великими математиками своего времени, такими как Жозеф Луи Лагранж, Адриен Мари Лежандр и Гаусс, выдавая себя за некоего "господина Леблана". Гаусс узнал правду о ее личности при самых любопытных обстоятельствах, которые только можно себе представить. Когда наполеоновские войска заняли территорию Германии, где жил Гаусс,

Жермен испугалась за жизнь своего корреспондента, вспомнив пример Архимеда, и написала генералу Пернети, другу ее семьи, попросив его защитить гения. Пернети послал отряд, от которого Гаусс узнал о хлопотах Софи. Тронутый и удивленный, Гаусс написал Жермен, заметив, что из-за глупых предрассудков эпохи женщина вынуждена действительно быть человеком, обладающим "благородной смелостью, необычайным талантом и наивысшей гениальностью", чтобы победить все препятствия.

Итак, любопытство Эйлера было разбужено комментариями Гольдбаха, и швейцарец начал анализировать работы Ферма. Среди прочего он доказал: тот ошибся, утверждая, что числа, известные как "числа Ферма", всегда простые. Также Эйлер изучал Великую теорему Ферма. И хотя он не смог доказать ее для общего случая, ему удалось доказать ее для n = 3. Так что на тот момент, когда Эйлер оставил данную тему, было доказано два случая... или на самом деле бесконечное их число, поскольку если доказать теорему для n = 3, результат также справедлив для всех чисел, кратных 3, то есть для последовательности 6, 9, 12, 15... Так происходит потому, что любая степень, кратная трем, может быть записана в виде числа в кубе. Например, 46 = 163. Кстати, доказательство самого Ферма для n = 4 справедливо также для чисел, кратных 4.

Если бы мы могли доказать теорему для простых чисел, поскольку любое число кратно простым числам, мы бы доказали ее в целом. Однако, к сожалению, доказательство для п - 5 оказалось гораздо сложнее, чем представлял себе Ферма. В любом случае, тот факт, что Эйлер заинтересовался работами Ферма, вызвал интерес к теории чисел. Благодаря Эйлеру и Карлу Фридриху Гауссу (1777-1855) данная дисциплина превратилась в уважаемую математическую теорию, как этого и хотел Ферма.

Гаусс отзывался о Великой теореме Ферма достаточно презрительно и считал работу над ней потерей времени. Возможно, он и сам пытался решить когда-то эту задачу, но, потерпев неудачу и разочаровавшись, повел себя подобно лисе из басни про лису и виноград. Но другие математики его времени подошли к задаче очень серьезно. Например, Софи Жермен открыла, что для простых чисел, теперь носящих ее имя (числа р, где р — простое число, и Р = 2р + 1 также простое), с учетом некоторых требований, которым должны соответствовать Р и р (в частности, что р не является делителем произведения трех неизвестных — х, y, z — из уравнения Ферма), теорема Ферма верна для n = p. С помощью этого подхода Жермен удалось доказать теорему Ферма для всех простых чисел, меньших 100. К сожалению, ее работа не была опубликована при жизни.

Адриену Мари Лежандру и Густаву Лежёну Дирихле удалось доказать теорему для n = 5. При этом они использовали математические инструменты, которых не существовало в XVII веке, такие как теория квадратичных форм. Доказательство теоремы является относительно простым для n = 3 и n = 4, но оно становится гораздо сложнее начиная с n = 5 и недоступно обычным методам начиная с n = 23.

В любом случае, Софи Жермен была первой, кто попытался найти решение для целого класса чисел, а не для частных случаев; также она открыла новые подходы к решению задачи, которыми продолжали пользоваться в последующие годы.

ЛАМЕ, КОШИ И КУММЕР

В следующие десятилетия были предприняты попытки Габриеля Ламе (1795-1870) и Огюстена Луи Коши (1789-1857) доказать теорему. Ламе удалось найти решение для n = 7, и на бурном заседании Французской академии наук он объявил, что вот-вот докажет ее для общего случая. Он в общих чертах обрисовал свою стратегию, которая основывалась на алгебре комплексных чисел. Но настоящая сенсация произошла, когда Коши, который был одним из самых значительных математиков своего времени, встал и объявил, что он тоже вот-вот получит доказательство и его подход очень похож на метод Ламе.

1 ... 4 5 6 7 8 9 10 11 12 ... 29
Перейти на страницу:
Тут вы можете бесплатно читать книгу Самая сложная задача в мире. Ферма. Великая теорема Ферма - Luis Alvarez.
Комментарии