Категории
Самые читаемые
PochitayKnigi » Документальные книги » Биографии и Мемуары » Революция в воздухе. Лавуазье. Современная химия. - Adela Paez

Революция в воздухе. Лавуазье. Современная химия. - Adela Paez

Читать онлайн Революция в воздухе. Лавуазье. Современная химия. - Adela Paez

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 4 5 6 7 8 9 10 11 12 ... 26
Перейти на страницу:

Установив однажды эффективность «солнечной печи», Лавуазье продолжал использовать ее для опытов с нагреванием. Чтобы понять процесс горения, он сначала изучил изменения, которые претерпевали другие, не металлические вещества — фосфор и сера. Уже давно было известно, что белый фосфор самопроизвольно возгорается и при этом легко наблюдаемом процессе выделяется большое количество тепла.

Когда Лавуазье принялся за его изучение, он получил дополнительную информацию: Антуан подтвердил то, на что уже указал Гейле: вес фосфора сильно увеличивается в процессе горения. В отличие от продукта, образовывавшегося во время горения алмазов, продукт, получавшийся во время горения фосфора, был плотным, и это позволяло его точно взвесить. В конце 1772 года Лавуазье послал в Академию письмо, в котором объяснял, что фосфор поглощает воздух в большом количестве и вместо того, чтобы терять вес (чего можно было ожидать из- за потери флогистона), наоборот, приобретает вес, равный поглощенному воздуху. Образовывающееся новое вещество было «кислотным духом фосфора», поскольку при смешивании его с водой получалось то, что мы называем сегодня фосфорной кислотой.

P4 + 5O2→ P4O10,

P4O10 + 6H2O→ 4H3PO4.

Проведя сходный опыт с серой, Лавуазье заметил подобный эффект: продукт сгорания весил больше, чем исходная сера, а при смешивании с водой образовывал то, что известно сегодня под названием серной кислоты. Он заметил также, что из одного фунта серы получалось больше одного фунта кислоты.

S + 3/2 O2 → SO3;

SO3 + H2O → H2SO4.

РИС. 1

Следующим шагом стало изучение превращения «извести» металла (свинцового глета или оксида свинца) при нагревании с помощью линзы Чирнгаузена вместе с углем, который, как мы уже видели, считался тогда источником флогистона.

Лавуазье собрал «эластичный флюид» (хотя Ван Гельмонт предложил слово «газ» веком раньше, оно еще не использовалось), который собирался на воде, предварительно покрытой слоем масла, мешавшим воде поглощать газ. Чтобы измерить его, он использовал пневматическую ванну, разработанную Гейлсом.

ВОЗДУХ, ХАОС И ПРИЗРАКИ

Мы знаем сегодня, что существование элемента или соединения в твердом, жидком или газообразном состоянии зависит от его давления и температуры. Почти невозможно представить себе времена, когда газ не считался веществом.

И все же это логично: трудно изучать вещества без определенной формы и объема, невидимые, часто без запаха, которые, соответственно, с трудом можно собрать. Поэтому одним из самых важных открытий в химии до Лавуазье стало открытие существования разных видов «воздуха»» и разработка приборов для их сбора. Фламандец Ян Баптист Ван Гельмонт считается отцом «пневматической науки»», поскольку еще в XVII веке он изучал все возможные типы воздуха, хотя так и не сумел определить его состав. Ван Гельмонт выделил воздух, содержавшийся в термальных водах, который является тем же самым веществом, что образуется при горении угля либо в погребах при брожении вина (СO2); с другой стороны, был еще воздух, который улетучивался при горении серы (SO2), и горючий воздух, выделяющийся при гниении органики (Н2, СН4, H2S). Ван Гельмонту мы обязаны и словом «газ»». Большинство историков науки утверждают, что корень данного слова происходит от греческого «хаос»», хотя Лавуазье связывал его с другим словом, означающим «призрак»». Долгое время считалось, что «обычный воздух»», то есть окружающая нас атмосфера, является просто средой, в которой происходят химические реакции, и сам по себе он никакой роли в этих реакциях не играет. В начале XVIII века опыты англичанина Стивена Гейлса и шотландца Джозефа Блэка сделали очевидным тот факт, что во время таких реакций, как горение, атмосфера может быть веществом, активно участвующим в реакции.

Для выделения разных типов «воздуха» необходимо, чтобы они не улетучивались в атмосферу. Поэтому Гейле придумал установку, изображенную на этой гравюре, представленной в его труде Vegetable Staticks (1727). В улучшенном виде данная установка сыграла решающую роль в определении различных газов.

Как видно на рисунке 1, речь шла о стеклянном колпаке, частично заполненном водой, в центре которого находилась пневматическая ванна с емкостью, куда помещали материал для нагревания. Сфокусированные солнечные лучи достигали емкости через поверхность колпака, который, в свою очередь, был погружен в другую емкость, также наполненную водой.

Лавуазье установил, что по мере того как уменьшалось количество «извести» и образовывался чистый металл, выделялся некий газ и уменьшался уровень воды внутри колпака. Объем произведенного газа был в 750 раз больше объема использованной окиси свинца.

Чтобы понять такое огромное увеличение объема, надо принять во внимание, что окись свинца — это твердое вещество, тогда как выделяемый «воздух» является газом, а твердые и жидкие вещества занимают гораздо меньший объем, нежели газообразные. Например, один моль любого газа в нормальных условиях (Р = 1 атм, Т = °0 С) занимает 22, 4 литра. А 1 литр воды (Н2O), плотность которой составляет 1 грамм на миллилитр, весит 1 килограмм и содержит 55, 55 молей.

Газ: 1 моль → 22, 4 литра.

Вода (жидкая): 1 литр → 55, 55 молей.

Плотность других твердых и жидких веществ обычно больше: например, плотность меди — порядка 7 граммов на миллилитр, а ртути — больше 13.

Подтвердив увеличение объема, Лавуазье повторно провел опыт с фосфором, но на этот раз использовал закрытую емкость, чтобы определить, меняется ли объем воздуха вокруг. Он убедился, что воздух теряет между пятой и шестой частью от изначального количества. Лавуазье провел множество опытов, чтобы определить увеличение веса, и в итоге убедился, что 154 грана фосфора поглотили во время горения 80 гранов воздуха или другого «эластичного флюида», содержащегося во вдыхаемом воздухе. Гран, так же как и фунт, являлся единицей веса, используемой в то время: 1 парижский фунт =16 унций; 1 парижская унция = 8 тросов; 1 трос = 72 грана; 1 парижский фунт соответствовал 480 граммам.

Кроме того, Лавуазье заметил, что в закрытой емкости может окисляться только определенное количество фосфора. Предвосхищая важность этих опытов, но не решаясь обнародовать их объяснение, он отправил 1 ноября 1772 года в Академию наук запечатанное письмо, в котором детально изложил свои мысли:

«Это увеличение веса происходит из-за необыкновенного количества воздуха, который собирается во время горения, соединенного с парами. То, что происходит с серой и фосфором, заставляет меня думать, что явление, сопровождающее горение этих элементов, будет наблюдаться и в случае большинства других веществ: они могут увеличивать вес во время горения или прокаливания. Я убежден, что увеличение веса при образовании металлических известей происходит по тем же причинам. Опыты привели меня к тем же заключениям: нагревая окись свинца в закрытом горшке прибора Гейлса, я заметил, что когда известь превращается в металл, выделяется большое количество воздуха, и этот воздух занимает объем в 750 раз больше, нежели объем используемой окиси свинца».

Это было первое описание, разумеется упрощенное, процесса горения. Оно ознаменовало собой настоящую революцию, поскольку Лавуазье не воспользовался теорией флогистона, на которую опирались все химики Европы в течение более чем 50 лет. Кроме того, он обозначил разницу между так называемым «фиксируемым воздухом» (СO2), который выделялся во время нагрева окиси свинца и угля, и «обычным воздухом» (O2 + N2). Согласно Гейлсу, речь шла об одном и том же веществе, тогда как, по мнению других ученых, эти два «воздуха» имели разные свойства, поскольку если «обычный воздух» был жизненно необходим, «фиксируемый воздух» убивал животных, которые его вдыхали, и заставлял гаснуть огонь.

В феврале 1773 года Лавуазье начал новую лабораторную тетрадь планом работы, нацеленным на изучение пневматической химии и на окончательное опровержение или подтверждение теории флогистона.

САМОВОСПЛАМЕНЯЮЩИЙСЯ ФОСФОР

Существует много аллотропических форм фосфора, и они обладают разной структурой и разными свойствами. Самыми известными примерами абсолютно непохожих по внешнему виду и свойствам аллотропических форм являются алмаз и графит, состоящие из углерода. Самые известные аллотропические формы фосфора — белая и красная, однако также существует фиолетовый фосфор и черный. Белый фосфор химически наиболее активен, его молекула состоит из четырех атомов фосфора (Р), расположенных в вершинах тетраэдра. При контакте с воздухом он самовоспламеняется и образует оксид Р4О10. Во время этого процесса выделяется большое количество энергии. Образовавшееся вещество гораздо более твердое, нежели изначальный белый фосфор. Во избежание возгорания белый фосфор хранится в воде. Мы сегодня понимаем этот и другие процессы, потому что Лавуазье придумал систематическую номенклатуру для химических соединений и открыл закон сохранения массы. Фосфор при контакте с кислородом производит оксид, как и в случае с алмазами, но, в отличие от диоксида углерода, оксид фосфора является твердым веществом, поэтому не улетучивается в атмосферу, и следовательно, его легко взвесить. На рисунке ниже изображен процесс реакции фосфора с кислородом. Изначальное распределение атомов фосфора примерно сохраняется, но в оксиде один атом кислорода (темно-серый) вклинивается между каждой парой атомов фосфора (светло-серые в Р4 и в Р4O10).

1 ... 4 5 6 7 8 9 10 11 12 ... 26
Перейти на страницу:
Тут вы можете бесплатно читать книгу Революция в воздухе. Лавуазье. Современная химия. - Adela Paez.
Комментарии