Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Математика » Десять великих идей науки. Как устроен наш мир. - Питер Эткинз

Десять великих идей науки. Как устроен наш мир. - Питер Эткинз

Читать онлайн Десять великих идей науки. Как устроен наш мир. - Питер Эткинз

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 76 77 78 79 80 81 82 83 84 ... 107
Перейти на страницу:

4. Все прямые углы равны друг другу.

5. Для любых данных прямой и точки, не лежащей на ней, можно провести через эту точку одну, и только одну прямую, параллельную данной.

(Я несколько упростил эти утверждения, но сохранил их суть.) Пятая аксиома известна как постулат о параллельных прямых. Он ответственен за большее количество бед, чем почти любое другое утверждение в математике, ибо он имеет более сложный вид по сравнению с другими, соблазнительно намекая, что его можно доказать с помощью четырех более простых аксиом. Целые жизни напрасно были растрачены на безуспешные попытки вывести эту аксиому из других. Теперь мы знаем, что она независима от других аксиом и что можно придумать абсолютно приемлемые геометрии, в которых постулат о параллельных прямых заменен другими, таким, например, как:

5'. Для любых данных прямой и точки, не лежащей на ней, нельзя провести через эту точку ни одной прямой, параллельной данной.

Или даже:

5''. Для любых данных прямой и точки, не лежащей на ней, можно провести через эту точку бесконечное число прямых, параллельных данной.

Описание пространства, использующее постулат Евклида о параллельных прямых, называется евклидовой геометрией; описания, основанные на альтернативных постулатах, называются неевклидовыми геометриями.

Пока что мы сосредоточимся на евклидовой геометрии, так как она, безусловно, выглядит подходящей для пространства, в котором мы живем. В тринадцати книгах Евклида показано, что из этих пяти аксиом может быть выведено огромное количество свойств, и эти свойства оказываются верными при их проверке с помощью практических измерений. Одним из следствий этих аксиом, и, в частности, постулата о параллельных прямых, является теорема Пифагора. Поэтому существование нашей мифической формулы Хаммурапи для расстояния вытекает из пяти аксиом Евклида, и геометрия Хаммурапи тоже является евклидовой.

Итак, мы сформулировали евклидову геометрию на плоскости, в плоской двумерной области, похожей на поверхность листа бумаги. Однако мы все знаем, или думаем, что знаем, что обитаем в трехмерном пространстве и обладаем свободой движения вверх и вниз так же, как по плоскости. Теорему Пифагора легко распространить на три размерности, включив длину третьей стороны и записав:

расстояние2 = сторона12 + сторона22 + сторона32.

Мы не обязаны останавливаться на этом. Математики живут ненасытной страстью к обобщениям, и евклидова геометрия является богатой почвой для обобщений. Хотя большинство из нас не может вообразить что-нибудь за пределами наших домашних трех измерений, легко выразить свойства пространств больших размерностей, используя формулы. Так четырехмерная формула Пифагора будет иметь вид:

расстояние2 = сторона12 + сторона22 + сторона32 + сторона42.

Вы могли бы подумать, что в размышлениях о пространствах с более высокими, чем три, размерностями мало пользы, если не считать интеллектуального удовольствия, но вы были бы неправы. Мы увидим, к примеру, что способность переходить из размерности в размерность является ценным способом изучения структуры нашего мира. Более того, можем ли мы быть уверены, что в нашем реальном мире имеются только три измерения, или есть несколько — даже много — других измерений, которые как-то спрятаны от нас? Мы видели в главе 8, что такой уверенности нет, так как, может быть, мы обитаем в десятимерном пространстве с дополнительным измерением в виде времени.

Я утверждал, что наше воображение не может выйти за пределы трех измерений. Это не вполне верно. Некоторые люди, потратившие в жизни много времени на изучение геометрий более высоких размерностей, заявляют, что имеют некоторое отдаленное представление о связях, существующих в четырех, а не в трех измерениях, и создают ошеломляющие компьютерные образы, изображающие трехмерные сечения четырехмерного, мира (рис. 9.1).[45] Я не призываю вас направить ваши умственные способности по этому пути, но для подготовки к тому, что последует дальше, мы нуждаемся в некотором знакомстве с четырехмерными ландшафтами. Чтобы осуществить это, мы должны вновь пройти фрагменты пути интеллектуальной революции, инициированной итальянскими художниками в конце тринадцатого, начале четырнадцатого веков, такими как Джотто ди Бондоне и Пьеро делла Франческа, которые начали передавать три измерения в двух, используя перспективу, математические основы которой заложил в конце восемнадцатого века Гаспар Монж, граф де Пелоуз (1746-1818) в своей Géométrie descriptive (1798). Затем мы должны пойти дальше и увидеть, как четырехмерные объекты могут быть представлены трехмерными изображениями в двумерных проекциях. Все это звучит довольно сложно, ибо это все равно что просить муравья, который всегда был заперт в плоском мире, воспользоваться своим воображением, чтобы представить себе еще и вертикаль. Но мы интеллектуально оснащены лучше, чем муравьи, и можем ожидать, что достигнем некоторого прогресса.

Рис. 9.1. Некоторое отдаленное представление об объектах в гиперпространстве может быть получено с помощью графических образов и анимаций. Здесь изображены два кадра анимации, изображающей вращение плоского тора в четырех измерениях, спроектированное в три измерения и затем представленное в двух.

Ноль-мерный куб (0-куб) — это точка. Представьте себе 0-куб как карандашную точку, тогда одномерный куб (1-куб) является линией, которую карандаш рисует, когда его двигают по прямой (рис. 9.2). Двумерный куб (2-куб) является плоской фигурой, порожденной протаскиванием 1-куба в новом направлении, лежащем перпендикулярно первому. Все это легко воспринять с помощью компаса нашего воображения, так же как и воображения смышленого муравья, и легко проделать на листе двумерной бумаги. Трехмерный куб (3-куб), заурядный повседневный куб, порождается протаскиванием плоского 2-куба в направлении, перпендикулярном его плоскости. С тем, чтобы вообразить этот шаг, проблем не возникает, хотя муравей был бы озадачен, поскольку ему не дано понять, как может существовать третье перпендикулярное направление. Не возникает проблем и с представлением 3-куба на 2-странице, обычном листе бумаги, поскольку мы теперь так хорошо знакомы с двумерными представлениями в искусстве, что расшифровываем эти представления без труда.

Рис. 9.2. Кубы различных размерностей могут быть построены с помощью движения куба предшествующей размерности в новом, перпендикулярном направлении. Здесь мы видим семейство кубов, построенных из 0-куба (точки). Отрезок (1-куб) получен протаскиванием точки в одном направлении, квадрат (2-куб) — протаскиванием отрезка в перпендикулярном направлении, обычный куб (3-куб) — протаскиванием квадрата в новом перпендикулярном направлении. Мы научились интерпретировать результаты двумерных представлений куба. Наконец, четырехмерный гиперкуб (4-куб) строится путем протаскивания 3-куба в еще одном перпендикулярном направлении. Мы, человеческие существа, еще не знаем, как интерпретировать результирующую диаграмму: я показываю два изображения, полученных вращением гиперкуба в разных направлениях.

Чтобы помочь озадаченному муравью, мы можем проделать следующее. Мы осторожно разрежем 3-куб вдоль одной из граней, развернем его, положим на плоскость (рис. 9.3) и расскажем муравью, как нужно сложить грани, чтобы сформировать 3-куб. Муравей будет озадачен тем, каким образом края, которые я пометил жирной линией, могут соприкоснуться, но по крайней мере он будет иметь некоторое отдаленное представление о том, что такое 3-куб, и, возможно, научится интерпретировать наши двумерные представления 3-куба, включая забавную, в чем муравей может поклясться, картинку, на которой мы изображали его шестиугольником.

Рис. 9.3. Обычный куб в трехмерном пространстве может быть построен из крестообразной формы, состоящей из шести квадратов, путем склеивания вместе соседних сторон, перегибания длинной полосы и соединения краев, помеченных жирной чертой. То, что для соединения краев с жирной чертой можно использовать измерение, перпендикулярное к странице, легко увидеть нам, а существам, живущим в двумерном мире, трудно.

Мы знаем теперь достаточно, чтобы построить четырехмерный гиперкуб (4-куб). В математике многое делается по аналогии. Так же как мы протаскивали 0-куб, чтобы получить 1-куб, и так далее, мы построим 4-куб, протаскивая 3-куб (обычный куб) в направлении, перпендикулярном трем первым измерениям. Теперь мы оказались озадаченными муравьями, так как мы не понимаем, что такое направление, перпендикулярное нашим трем измерениям. Все же, в точности так, как муравей, не способный постичь третье измерение, мы можем сделать умственный прыжок и, приняв мысль о том, что оно есть — так же, как муравей, — попытаться понять его по аналогии. Чтобы облегчить себе понимание двумерного образа 4-куба, показанного на рис. 9.2, мы могли бы совершить гипердействие и разрезать куб вдоль некоторой грани, а затем развернуть его в трех измерениях (рис. 9.4). Так же как 3-куб разворачивается на шесть 2-кубов, 4-куб разворачивается на восемь 3-кубов (один 3-куб спрятан в центре верхнего креста). Чтобы вообразить, как 4-куб строится из 3-кубов, которые составляют его поверхность, представим себе склеивание. Нам, 3-читателям, аналогам 2-муравьев, кажется невозможным понять, как, например, могут быть соединены две помеченных грани, так же как у 2-муравья есть похожая проблема с тремя измерениями. У 4-читателя никаких трудностей тут нет.

1 ... 76 77 78 79 80 81 82 83 84 ... 107
Перейти на страницу:
Тут вы можете бесплатно читать книгу Десять великих идей науки. Как устроен наш мир. - Питер Эткинз.
Комментарии