Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Физика » Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Брайан Грин

Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Брайан Грин

Читать онлайн Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Брайан Грин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 77 78 79 80 81 82 83 84 85 ... 116
Перейти на страницу:

Дуальность в пяти теориях струн в чём-то похожа на этот пример: грубо говоря, константы связи струны играют роль, аналогичную температуре в пустыне. Подобно воде и льду, любые две из пяти теорий с первого взгляда кажутся совершенно различными. Но при изменении соответствующих констант связи эти теории превращаются одна в другую. Так же, как лёд превращается в воду при увеличении температуры, одна из теорий переходит в другую при увеличении константы связи. Эта аналогия, в конце концов, может привести нас к выводу о том, что все теории струн являются дуальными описаниями единой структуры — аналога H2O для воды и льда.

Аргументация в пользу такого вывода почти целиком основана на принципах симметрии. Обсудим эти принципы.

Мощь симметрии

Никто и никогда даже не пытался изучить свойства любой из пяти теорий струн при больших значениях констант связи, потому что не было и намёка на то, как поступать вне рамок теории возмущений. Однако в конце 1980-х — начале 1990-х гг. физики начали делать первые, но твёрдые шаги к описанию конкретных свойств теорий (в частности, к вычислению отдельных масс и зарядов), проявляющихся в области физики сильной связи для данной теории, но всё же находящихся в пределах наших вычислительных возможностей. Такие вычисления, с необходимостью выходившие за рамки теории возмущений, сыграли главную роль во второй революции суперструн и стали возможными во многом благодаря соображениям симметрии.

Принципы симметрии дают мощные средства для изучения многих свойств реального мира. Мы уже упоминали о том, что хорошо подтверждающаяся уверенность в том, что законы физики не выделяют никакое конкретное место во Вселенной и никакой конкретный момент времени, позволяет нам предположить, что законы «здесь и сейчас» будут теми же самыми, что и «там и тогда». Это всеобъемлющий пример; но принципы симметрии могут с тем же успехом применяться в более скромных случаях. Например, если свидетель ограбления разглядел лишь правую половину лица преступника, в полиции его информация всё равно окажется ценной для составления фоторобота. Симметрия тому причиной. Хотя правая и левая половина лица отличаются, большинство лиц достаточно симметричны для того, чтобы отражённый образ одной половины лица можно было бы с успехом использовать в качестве приближения для другой половины.

В каждом из разнообразных применений роль симметрии состоит в возможности восстановления свойств по косвенным признакам, что часто гораздо проще прямого подхода. Для изучения законов физики в созвездии Андромеды можно было бы направить туда экспедицию, найти подходящую планету у одной из звёзд, построить там ускорители и проводить эксперименты, аналогичные экспериментам на Земле. Но косвенный подход с использованием симметрии при сдвиге места действия куда проще. Можно было бы в деталях ознакомиться с чертами левой половины лица грабителя, изловив преступника и отправив его в участок. Но часто гораздо проще сначала воспользоваться лево-правой симметрией человеческих лиц.[42]

Суперсимметрия принадлежит к более абстрактным типам симметрии, который связывает физические свойства элементарных объектов с различными спинами. Эксперимент даёт лишь косвенные намёки на то, что в микромире реализуется такой механизм симметрии, но по описанным выше причинам физики твёрдо убеждены, что он действительно реализуется. Естественно, этот механизм является неотъемлемой частью теории струн. В 1990-е гг. после пионерской работы Натана Зайберга из Института перспективных исследований физики осознали, что суперсимметрия даёт мощный инструмент, используя который можно косвенным методом ответить на ряд очень сложных и важных вопросов.

Одно то, что теория обладает суперсимметрией, позволяет даже без понимания всех тонкостей теории накладывать существенные ограничения на её допустимые свойства. Приведём пример из лингвистики. Пусть известно, что в некоторой последовательности букв буква «y» встречается ровно три раза, и задача состоит в том, чтобы угадать эту последовательность. Не имея дополнительной информации, невозможно найти однозначное решение: подойдёт любая последовательность с тремя буквами «y», например mvcfojziyxidqfqzyycdi и т. п. Но теперь допустим, что нам последовательно дают две подсказки: во-первых, ответ должен быть существующим английским словом, и, во-вторых, это слово должно содержать минимальное количество букв. Бесконечное количество первоначальных вариантов сокращается этими двумя подсказками сразу до одного кратчайшего английского слова с тремя «y»: syzygy (сизигия).

Суперсимметрия также даёт подсказки, позволяющие конкретизировать ситуацию в теориях, которым свойственны такие принципы симметрии. Чтобы понять это, представьте, что вы столкнулись с физической задачей, аналогичной только что описанной задаче из лингвистики. Внутри чёрного ящика находится нечто неопознанное с определённым зарядом. Заряд может быть электрическим, магнитным, или иметь иную природу; для определённости примем, что этот заряд равен трём единицам электрического заряда. Без дополнительной информации определить содержимое ящика невозможно. В нём могут находиться три частицы с зарядом 1, подобные позитронам или протонам, или четыре частицы с зарядом 1 и одна частица с зарядом −1 (например, электрон), или девять частиц с зарядом 1/3 (например, u-кварки) плюс любое число незаряженных частиц (например, фотонов) и т. д. Подходит любая комбинация частиц с суммарным зарядом 3. Как и в лингвистической задаче, где единственным условием было наличие трёх букв «y», число возможных вариантов содержимого чёрного ящика бесконечно.

Но теперь, как и в примере из лингвистики, предположим, что нам даны ещё две подсказки: во-первых, теория, описывающая мир (а, следовательно, и содержимое чёрного ящика) является суперсимметричной, и, во-вторых, содержимое чёрного ящика должно иметь минимальную массу. Пользуясь результатами работ Е. Богомольного, Маноджа Прасада и Чарльза Соммерфилда, физики показали, что такая жёсткая структура формализма (формализм суперсимметрии — аналог английского языка) и «условие минимальности» (минимальность массы с данным электрическим зарядом — аналог минимальной длины слова с данным числом букв «y») приводят к тому, что скрытое содержимое определяется однозначно. То есть требование минимальности массы содержимого чёрного ящика при условии, что заряд внутри него будет равен заданному, позволяет однозначно определить это содержимое. Состояния с данным значением заряда, в которых суммарная масса частиц минимальна, называют БПС-состояниями в честь трёх открывших эти состояния учёных.{82}

Важность БПС-состояний состоит в том, что их свойства однозначно, легко и точно определяются без привлечения теории возмущений. Это справедливо вне зависимости от значения констант связи. Даже если константа связи струны велика, и, следовательно, подход с использованием теории возмущений неприменим, всё равно можно вычислить точные параметры БПС-состояний. Эти параметры часто называют непертурбативными массами и зарядами, так как их значения вычислены вне рамок приближённого подхода по теории возмущений. Поэтому для читателя, владеющего английским языком, BPS можно расшифровать и как beyond perturbative states — состояния вне рамок теории возмущений.

БПС-свойства описывают лишь малую долю всех физических явлений в конкретной теории струн при больших константах связи, но эти состояния позволяют чётко прояснить некоторые характеристики теории в области сильной связи. При выходе константы связи струны за рамки применимости теории возмущений, привязка к БПС-состояниям позволяет расширить границы нашего понимания теории. Как и знание лишь нескольких выборочных слов в иностранном языке, эти состояния могут нам помочь продвинуться довольно далеко.

Дуальность в теории струн

Следуя Виттену, начнём с анализа одной из пяти теорий, например теории струн типа I, и предположим, что все её девять пространственных измерений являются плоскими и несвёрнутыми. Такое предположение, разумеется, совершенно нереалистично, но оно делает анализ проще; случай свёрнутых измерений будет рассмотрен немного ниже. Примем сначала, что константа связи струны много меньше 1. В этом случае справедливы методы теории возмущений, и многие конкретные характеристики теории могут быть (и были) изучены довольно точно. Если мы будем увеличивать константу связи, но следить, чтобы она оставалась гораздо меньше 1, методы теории возмущений будут оставаться справедливыми. Однако конкретные характеристики теории несколько изменятся. Например, численные параметры рассеяния двух струн станут немного иными, так как изображённые на рис. 12.6 диаграммы с петлями при увеличении константы связи дадут бо́льшие вклады. Несмотря на эти изменения численных параметров, физическое содержание теории останется неизменным, если величина константы связи соответствует области применимости теории возмущений.

1 ... 77 78 79 80 81 82 83 84 85 ... 116
Перейти на страницу:
Тут вы можете бесплатно читать книгу Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Брайан Грин.
Комментарии