Категории
Самые читаемые
PochitayKnigi » Документальные книги » Публицистика » Тайны Вселенной - Валерий Демин

Тайны Вселенной - Валерий Демин

Читать онлайн Тайны Вселенной - Валерий Демин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 78 79 80 81 82 83 84 85 86 ... 107
Перейти на страницу:

Автор. На основе такого предположения создаются различные гипотезы и идеи, позволяющие якобы объяснить возникновение «скрытой массы». Некоторые идеи[55] основаны на том, что «скрытые массы» образовались в результате резкого нарушения симметрии Вселенной за счет чрезвычайно быстрого ее «раздувания» (она будто бы расширилась и выросла более чем на 28 порядков величины за время менее 10–30 секунд!). Не менее «оригинальными» являются идеи, основанные на том, что «скрытые массы» образованы различными видами «экзотических» веществ, в том числе состоящих из нейтрино (частиц с массой порядка 0,0001 массы электрона), или новой очень легкой частицы — аксона (определена из теоретических предпосылок), или из «космических струн», о которых речь уже шла выше (это якобы протяженные «топологические дефекты», возникающие при нарушении симметрии в ранней Вселенной!), и т. п. Как же можно объяснить этот феномен природы, исходя из известных законов природы?

Профессор. Для объяснения подобных чудес Вселенной надо в первую очередь обратиться к классической механике. Как известно, в этой науке при расчете гравитационных взаимодействий небесных тел размерами тела пренебрегают, а всю массу тела заменяют эквивалентной массой материальной точки; взаимодействие между материальными точками определяют по известной ньютоновской формуле всемирного тяготения. Такое допущение оказалось вполне приемлемым для изучения динамики движения планет и спутников Солнечной системы.

Для изучения же динамики движения галактик такое упрощение в расчетах уже недопустимо, так как их массы распределены в пределах огромного пространства. Однако методический подход Ньютона и в этом случае может остаться справедливым, если распределенную массу галактик представить в виде совокупности взаимодействующих точечных масс и к каждой из них применять известный способ расчета сил гравитации. Тогда сила взаимодействия какого-либо небесного тела с галактикой определяется как результирующий вектор сил гравитационного притяжения этого тела со всеми точечными массами, входящими в состав галактики. Такой способ расчета динамики движения галактик (да и любых систем небесных тел, включая и Солнечную систему) позволяет обнаружить новые их гравитационные свойства и объяснить секрет «скрытых масс».

Автор. Но можно ли хотя бы приближенно оценить особенности распределения сил тяготения в пространстве внутри и вне галактик, без привлечения «скрытых масс»?

Профессор. Конечно, решение такой задачи связано с большими математическими трудностями, так как для этого требуется знать закон распределения масс отдельных небесных тел внутри объема галактики и их расстояния до интересующей нас точки пространства, где располагается наблюдатель. Однако для приближенной оценки можно сделать ряд упрощений. Например, определим центр масс всей галактики (точка О на рис. 109а) и расстояние r от него до небесного тела с массой mо, на котором находится наблюдатель. Затем плоскостью Ф, проходящей по радиус-вектору r, рассечем галактику на равные по массе половины — А и В. В каждой половине галактики определим центры их масс (точки О1 и О2), которые находятся на расстоянии l1 и l2 от центра масс О. Линии O1m0 и O2m0, соединяющие центры масс половинок галактики с небесным телом mо, повернуты относительно радиус-вектора r на углы a1 и a2 соответственно. Вдоль этих линий действует на тело m0 силы тяготения Q1 и Q2 левой и правой частей галактики. Геометрическая сумма векторов Q1 и Q2 этих сил образует результирующую силу тяготения галактики, действующую на тело m0.

Сравним результирующую силу Q с силой Q*, которая получается, если галактику представлять в виде эквивалентной материальной точки в центре масс (точка О, рис. 109б). Величина силы Q* будет, согласно закону Ньютона, пропорциональна произведению масс m и М (масса всей галактики) и обратно пропорциональна квадрату расстояния r между ними. Нетрудно подсчитать, что сила Q будет определяться величиной силы Q*, умноженной на функцию косинуса угла a в кубе.

Такая зависимость означает, что по мере приближения небесного тела m0 к центру галактики сила гравитационного притяжения Q будет уменьшаться (угол a стремится к 90°, а функция косинуса этого угла — к нулю). В частном случае, когда тело m0 окажется в центре галактики, результирующая сила тяготения, действующая на это тело, будет равна нулю. Это можно проверить и без каких-либо расчетов: тело то оказывается удаленным на одинаковые расстояния от масс m1, m2 и силы их тяготения Q1 и Q2 уравновешивают друг друга.

Орбитальная скорость движения V тела m0 вокруг галактики также зависит от характера распределения ее масс. Если обозначить V* скорость орбитального движения вокруг галактики, которая моделируется материальной точкой в центре масс О (рис. 109б), то величина орбитальной скорости V при распределенной массе галактики (рис. 109а) будет отличаться от V* на величину функции косинуса угла a в степени 3/2. Это означает, что по мере приближения к центру галактики орбитальная скорость движения тела m0 будет уменьшаться.

При этом небесное тело, оказавшееся посредине между двумя частями массы галактики m1, не воспринимает какой-либо гравитационной силы от небесного тела с точечной массой m0(Q=0) и может неподвижно сохранять свое положение (V=0) в этой точке пространства. По мере удаления небесного тела m0 от центра галактики растет, постепенно возрастает сила тяготения и орбитальная скорость (рис. 110). Такой характер изменения сил тяготения и орбитальной скорости совершенно не сходится с обычным представлением небесной механики для небесных тел с точечными массами.

Pассмотренная модель распределенной галактики, состоящей только из двух точечных масс m1 (i = 1; 2), является простейшей. Для более полного и точного представления о гравитационных свойствах галактик следует взять много материальных точек m1 (где i = 1, 2, 3…, n) и рассмотреть их суммарное силовое взаимодействие с точечным небесным телом m0. При этом в общем случае характер изменения гравитационного поля будет аналогичен рассмотренной двухмассовой модели, хотя и будет охватывать все внутреннее и окологалактическое пространство равномерно.

Таким образом, орбитальные скорости небесного тела, которое движется вблизи центра распределенной массы галактики, будут значительно меньше, чем если бы оно двигалось вокруг такой же сосредоточенной массы. Именно этот эффект и был обнаружен при наблюдении реальных галактик в звездном небе. Поэтому данный эффект следует объяснять не существованием в космическом пространстве какой-то «скрытой массы», а как следствие ослабленных сил тяготения галактик из-за того, что их массы рассредоточены в значительных пространственных объемах.

Кстати, заметим, что подобные эффекты можно наблюдать и в земных условиях. Если, например, разместить два тела, каждое с массой m на некотором расстоянии друг от друга (рис. 111), то наблюдатель (или какое-то другое пробное тело), помещенный посередине между этими двумя телами, не будет перемещаться под действием силы тяготения, поскольку она будет уравновешена противоположно направленными силами притяжения Q каждого из тел с массой m. В этих условиях наблюдатель, если он не знает обстановки, может сделать вывод о том, что этих масс вообще не существует. Или, наоборот, если он наблюдает за этими телами, то может сделать вывод, что действие этих видимых масс уравновешивается какими-то «скрытыми» в окружающем пространстве массами.

Автор. Итак, проблема «скрытых масс» в звездном мире может быть объяснена на основе космистского подхода, без привлечения экстравагантных гипотез. По-видимому, подобный подход может уточнить и некоторые «странности», наблюдаемые в земных условиях и в Солнечной системе? В частности, как изменяется гравитационное поле Земли и Солнца, если учитывать их распределенные массы, и как это отражается на движении планет?

Профессор. Рассмотренные выше гравитационные эффекты распределения масс проявляются и у небесных тел Солнечной системы. Возьмем в качестве примера Землю. Прибор П, измеряющий силу тяготения на поверхности Земли (рис. 112), будет показывать величину этой силы меньше, чем в случае сосредоточения всей земной массы в ее центре. Объясняется это тем, что распределенные массы, особенно у верхних слоев Земли в окрестностях расположения прибора, будут создавать силы тяготения Q1, направленные почти в горизонтальной плоскости и в противоположные стороны (составляющие Qx). Это означает, что некоторая (и весьма значительная) часть (В на рис. 112) массы Земли не проявляет себя в общем гравитационном потенциале. Эквивалентная часть земной массы (А на рис. 112), создающая вертикальную силу тяготения, имеет грушевидную, а не сферическую форму.

1 ... 78 79 80 81 82 83 84 85 86 ... 107
Перейти на страницу:
Тут вы можете бесплатно читать книгу Тайны Вселенной - Валерий Демин.
Комментарии