ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.
Шрифт:
Интервал:
Закладка:
ТТЧ ==> Ч ==> мета-ТТЧ
Иными словами, у строчки ТТЧ есть интерпретация в Ч, а у высказывания Ч может быть второе значение — оно может быть понято как высказывание о ТТЧ.
G: строчка, говорящая о себе самой на кодеЭти интересные факты — только половина истории. Другая половина — интенсификация автореференции. Мы сейчас находимся в положении Черепахи, когда она обнаружила, что можно создать пластинку, разбивающую проигрывающий ее патефон. Вопрос только в том, какую именно запись надо ставить на данный патефон. Выяснить это непросто.
Для этого нужно найти строчку ТТЧ — мы будем называть ее «G» — которая говорит о себе самой, в том смысле, что — одно из ее пассивных значений — это высказывание о G.
В частности, этим пассивным значением окажется
«G- не теорема ТТЧ»
Я должен добавить, что у G есть и другое пассивное значение, являющееся высказыванием теории чисел; подобно тому, как МУМОН мог быть интерпретирован двояко. Важно то, что каждое пассивное значение — действительно и полезно, и никоим образом не бросает тень сомнения на второе значение. (Тот факт, что играющий патефон может вызывать колебания в самом себе и в пластинке, не отрицает того, что эти колебания — музыкальные звуки!)
В неполноте ТТЧ виновато существование GОб изобретательном методе создания G и о некоторых важных понятиях ТТЧ мы поговорим в главах XIII и XIV; пока же давайте заглянем вперед и постараемся увидеть, какие последствия будет иметь нахождение автореферентной часта ТТЧ. Кто знает — может быть, это будет подобно взрыву! В некотором роде, это так и есть. Как вы думаете,
Является ли G теоремой ТТЧ, или нет?
Постарайтесь сформировать собственное мнение по этому поводу, не опираясь на мнение G о себе самой. В конце концов, G может понимать себя не лучше, чем понимает себя какой-нибудь мастер дзен-буддизма. Подобно МУМОНу, G может быть ложным утверждением. Подобно MU, G может быть не-теоремой. Мы не обязаны верить в любую возможную строчку ТТЧ, а только в ее теоремы. Давайте используем наше умение рассуждать логически и постараемся разъяснить этот вопрос.
Предположим, как обычно, что ТТЧ включает правильные методы рассуждения и что, следовательно, ложные утверждения не могут являться ее теоремами. Иными словами, любая теорема ТТЧ выражает истину. Таким образом, если бы строчка G была теоремой, она выражала бы истину, а именно: «G — не теорема.» Вся сила ее автореферентности видна здесь в действии. Будучи теоремой, G должна быть ложна. Опираясь на наше предположение, что ТТЧ не имеет ложных теорем, мы должны теперь заключить, что G — не теорема. Это не так страшно, но оставляет нас с меньшей проблемой. Зная, что G — не теорема, мы должны согласиться с тем, что она выражает истину… В этой ситуации ТТЧ не оправдывает наших ожиданий — мы нашли строчку, выражающую истинное высказывание, которая в то же время не является теоремой! И, как бы мы не удивлялись, мы не должны упускать из виду тот факт, что у G есть также и арифметическая интерпретация. Это позволяет нам подвести итог нашим наблюдениям:
Найдена такая строчка ТТЧ, которая является недвусмысленным высказыванием о некоторых арифметических свойствах натуральных чисел; более того, рассуждая вне системы, мы можем определить не только то, что это высказывание истинно, но и то, что эта строчка не является теоремой ТТЧ. Таким образом, если мы спросим у ТТЧ, истинно ли это высказывание, она не сможет ответить ни да, ни нет.
Аналогична ли G Черепашья цепочка в «Приношении MU»? Не совсем. Аналогичней с Черепашьей цепочкой будет ~G. Почему это так? Давайте подумаем! Что говорит ~G? Она должна утверждать обратное строчке G. G говорит: «G — не теорема ТТЧ»; следовательно, ~G должно читаться «G — теорема ТТЧ». Мы можем перефразировать обе эти строчки следующим образом:
G: «Я не теорема (ТТЧ)»
~G: «Мое отрицание — теорема (ТТЧ)»
Именно ~G параллельна Черепашьей цепочке, так как она говорит не о себе самой, но о той цепочке, что Черепаха дала Ахиллу сначала — цепочке, на которой была завязана дополнительная неточка (или на одну неточку меньше, чем надо — это зависит от точки зрения).
Последнее слово — за МумономВ своем коротком стихотворении о MU Джошу, Мумон проник в Мистерию Ультранеразрешимости глубже всех:
Есть ли у собаки природа Будды?
Это самый серьезный вопрос из всех.
Если вы ответите да или нет,
Вы утратите собственную природу Будды.
Часть II
Триплеты «GEB» и «EGB»
Прелюдия и…
Рис. 54. М. К. Эшер. «Лист Мёбиуса II» (гравюра на дереве, 1963).
Ахилл и Черепаха пришли в гости к Крабу, чтобы познакомиться с его другом Муравьедом. После того, как новые знакомые представлены друг другу, вся четверка садится за чай.
Черепаха: Мы вам кое-что принесли, мистер Краб.
Краб: Очень любезно с вашей стороны, но зачем же было утруждаться?
Черепаха: О это так, мелочь — в знак нашего уважения. Ахилл, отдайте, пожалуйста, подарок м-ру К.
Ахилл: С удовольствием. С наилучшими пожеланиями, м-р К. Надеюсь, что вам понравится.
(Ахилл протягивает Крабу элегантно завернутый пакет, квадратный и плоский Краб начинает его разворачивать).
Муравьед: Интересно, что это такое?
Краб: Сейчас узнаем (Кончает разворачивать и вытаскивает подарок). Две пластинки! Прекрасно! Но погодите-ка здесь нет этикетки. Неужели это снова ваши «особые» записи, г-жа Ч?
Черепаха: Если вы имеете в виду разбивальную музыку, на этот раз нет. Но эти записи действительно уникальны, так как они сделаны по персональному заказу. На самом деле, их еще никто никогда не слышал — кроме, конечно Баха, когда тот их играл.
Краб: Когда Бах их играл? Что вы имеете в виду?
Ахилл: Вы будете вне себя от счастья, м-р Краб, когда г-жа Ч объяснит вам, что это за пластинки.
Черепаха: Почему бы вам самому этого не рассказать, Ахилл? Не стеснятесь, говорите!
Ахилл: Можно? Вот здорово! Но я лучше загляну сначала в свои записи (Вытаскивает бумажку и откашливается ) Кхе-кхе. Желаете послушать рассказ о замечательных новых результатах в математике — результатах, которым ваши пластинки обязаны своим существованием?
Краб: Мои пластинки восходят к каким-то математическим выкладкам? Как интересно! Что ж, теперь, когда вы задели мое любопытство, я просто обязан об этом узнать.
Ахилл: Отлично! (Делает паузу, чтобы отхлебнуть чай, затем продолжает) Кто-нибудь из вас слышал о печально известной «Последней Теореме» Ферма?
Муравьед: Не уверен. Звучит знакомо, но не могу припомнить.
Рис. 55. Пьер Де Ферма
Ахилл: Идея очень проста. Пьер де Ферма, адвокат по профессии и математик по призванию, однажды, читая классический текст Диофанта «Арифметика», наткнулся на следующее уравнение:
a² + b² = c²
Он тут же понял, что это уравнение имеет бесконечно много решений для а, b, и с, и написал на полях свою знаменитую поправку:
Уравнение:
а n+ b n = с n
имеет решение в положительных целых числах а, b, с, и n только при n = 2 (и в таком случае имеется бесконечное множество a, b, и c, удовлетворяющих этому уравнению), но для n>2 решений не существует. Я нашел замечательное доказательство этого, которое, к несчастью, не помещается на полях.