Конструкции, или почему не ломаются вещи - Джеймс Гордон
Шрифт:
Интервал:
Закладка:
Фактические значения модуля Юнга
Значения модуля Юнга для многих органических веществ и инженерных материалов представлены в табл. 1. Они расположены в порядке возрастания - от модуля Юнга мягкого покрова взрослой самки саранчи (отнюдь не самого мягкого биологического материала; кстати, покров самцов и молодых самок саранчи не многим жестче) до алмаза. Из таблицы видно, что величина жесткости материалов может изменяться в 6 млн. раз. Причину таких колоссальных различий мы обсудим в гл. 7.
Таблица 1. Значения модуля Юнга для различных материалов
Материал/Модуль Юнга (E), МН/м2
Мягкий покров взрослой самки саранчи[6] 0,2
Резина 7
Пленка скорлупы яйца 8
Хрящ человека 24
Сухожилие человека 600
Штукатурка 1400
Неармированный пластик, полиэтилен, нейлон 1400
Фанера 7000
Дерево (вдоль волокон) 14000
Свежая кость 21000
Магний 42000
Обычное стекло 70000
Алюминиевые сплавы 70000
Латунь и бронза 120000
Железо и сталь 210000
Окись алюминия (сапфир) 420000
Алмаз 1200000
Следует отметить, что многие очень мягкие биологические материалы отсутствуют в таблице. Дело в том, что их упругие свойства даже приближенно не описываются законом Гука, а потому для них невозможно ввести модуль Юнга - во всяком случае, в том виде, как обсуждалось выше. К упругим свойствам таких материалов мы вернемся позже.
В настоящее время модуль Юнга считается фундаментальным понятием - оно господствует в инженерном деле, в материаловедении и начинает вторгаться в биологию. Однако должна была пройти вся первая половина XIX столетия, прежде чем модуль Юнга завоевал умы инженеров. Отчасти это явилось следствием крайнего консерватизма, а отчасти того, что все практически полезные идеи о напряжениях и деформациях появились довольно поздно.
После разработки основных идей трудно было представить себе что-либо более простое и очевидное, чем модуль Юнга, но до этого все представления об упругости казались исключительно сложными. От Юнга, сыгравшего важную роль в расшифровке египетских иероглифов и бывшего одним из проницательнейших умов своего времени, эта работа потребовала, очевидно, огромного умственного напряжения.
Он работал над проблемой жесткости в 1800 годы и рассуждал совершенно иначе, чем это сделали бы мы с вами. Юнг оперировал величиной, которая в настоящее время называется удельным модулем и показывает, каким должно быть уменьшение длины столба исследуемого материала под действием собственного веса. Данное самим Юнгом определение своего модуля, опубликованное в 1807 г., гласит: "Модуль упругости любого вещества есть столб этого вещества, способный производить давление на свое основание, которое так относится к весу, вызывающему определенную степень сжатия, как длина вещества к уменьшению этой длины"[7].
После всего этого даже египетские иероглифы могли показаться не такими уж сложными. Один из современников сказал о Юнге: "Он употреблял слова не в обычном их значении, а строй его мыслей редко походил на строй мыслей собеседников. Я не встречал человека, который бы менее его подходил для обмена знаниями".
К тому же не следует забывать, что Юнг старался осилить концепцию, которую едва ли можно было сформулировать без понятия о напряжениях и деформациях, вошедших в употребление лишь 15-20 лет спустя. Современное определение модуля Юнга (Е = напряжение/деформация) было дано в 1826 г., за три года до смерти Юнга, французским инженером Навье (1785-1836). Что касается Коши, то спустя некоторое время как изобретателю напряжения и деформации ему был пожалован титул барона. Думается, он это заслужил.
Прочность
Не следует путать прочность конструкции и прочность материала. Прочность конструкции определяется нагрузкой (в ньютонах или в килограммах), которая приводит к разрушению конструкции. Эта величина известна как разрушающая нагрузка, и она обычно используется только применительно к некоторой конкретной конструкции.
Прочность материала характеризуется напряжением (в МН/м2 или в кгс/см2), разрушающим сам материал. Обычно величина прочности более или менее постоянна для всех образцов данного вещества. Мы в основном будем рассматривать прочность материалов при растяжении, которую называют прочностью на разрыв. Ее обычно определяют, разрушая небольшие образцы в испытательной машине. Большинство вычислений в области прочности сводится, естественно, к определению прочности конструкции по известной прочности ее материала.
Величины прочности некоторых материалов приведены в табл. 2. Из нее видно, что прочность биологических и инженерных материалов, как и их жесткость, меняется в очень широких пределах.
Таблица 2. Прочность на разрыв различных твердых тел
Материал / Прочность на разрыв, МН/м2
Неметаллы
Мышечная ткань[8] 0,1
Стенка мочевого пузыря[8] 0,2
Стенка желудка[8] 0,4
Кишечник[8] 0,5
Стенка артерии[8] 1,7
Хрящ[8] 3,0
Цемент и бетон 4,1
Обычный кирпич 5,5
Свежая кожа 10,3
Дубленая кожа 41,1
Свежее сухожилие 82
Пеньковая веревка 82
Дерево (сухое):
вдоль волокон 103
поперек волокон 3,5
Кость[8] 110
Обычное стекло 35-175
Человеческий волос 192
Паутина 240
Хорошая керамика 35-350
Шелк 350
Хлопковое волокно 350
Струна (из биологических материалов) 350
Льняное полотно 700
Пластик, армированный стекловолокном 350-1050
Пластик, армированный углеволокном 350-1050
Нейлоновая ткань 1050
Металлы
Стальная рояльная проволока (хрупкая) 3100
Высокопрочная сталь 1500
Малоуглеродистая сталь 400
Сварочное железо 100-300
Обычный чугун (очень хрупкий) 70-140
Современный чугун 140-300
Алюминий:
литейные сплавы 70
деформируемые сплавы 140-600
Медь 140
Латунь 120-400
Бронза 100-600
Магниевые сплавы 200-300
Титановые сплавы 700-1400
Удивительно различие в прочности мышц и сухожилий. Этим объясняется и разница их поперечных сечений. Так, ахиллесово сухожилие, будучи толщиной всего с карандаш, прекрасно справляется с передачей натяжения от толстых икроножных мышц к костям пятки (что позволяет нам ходить и прыгать). Кроме того, из таблицы видно, почему инженеры не могут допустить большие растягивающие нагрузки на бетон, не армированный стальными прутьями.
В целом металлы прочнее неметаллов. А плотность почти у всех металлов больше, чем у большинства биологических материалов. (Удельный вес стали 7,8 г/см3, а большинства биологических тканей около 1,1 г/см3) Поэтому высокая прочность металлов в сравнении с тканями растений и животных не производит особого впечатления, если относить ее к единице массы.
Подытожим сказанное в этой главе.
Напряжение = нагрузка / площадь
Деформация = удлинение под действием нагрузки / первоначальная длина
Прочность - это напряжение, необходимое для разрушения материала. Модуль Юнга характеризует жесткость материала.
Модуль Юнга = напряжение / деформация = E
Прочность и жесткость - свойства разные. Приведем в этой связи выдержку из книги "Почему мы не проваливаемся сквозь пол": "Печенье жестко, но непрочно, сталь - и жесткая, и прочная, нейлон - нежесткий, гибкий, но прочный, малиновое желе - и нежесткое, и непрочное. Вряд ли можно ожидать большей информации о свойствах твердого тела, если пользоваться лишь двумя его характеристиками".