Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Физика » Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Брайан Грин

Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Брайан Грин

Читать онлайн Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Брайан Грин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 89 90 91 92 93 94 95 96 97 ... 116
Перейти на страницу:

Выше говорилось о том, что после объединения электронов и ядер в атомы фотоны могут беспрепятственно путешествовать во Вселенной. Это означает, что Вселенная заполнена «газом» фотонов, движущихся во всевозможных направлениях и равномерно распределённых в космическом пространстве. Когда Вселенная расширяется, газ свободно летящих фотонов расширяется вместе с ней, так как Вселенная, по существу, является резервуаром для этого газа. Подобно тому, как температуры более привычных для нас газов (например, воздуха в колесе) понижаются при расширении, температура этого фотонного газа тоже падает при расширении Вселенной. Уже давно, после работ Георгия Гамова и его студентов Ральфа Альфера и Роберта Хермана в 1950-х гг., а также Роберта Дикке и Джима Пиблза в середине 1960-х гг., физики поняли, что современная Вселенная должна быть наполнена почти однородным составом из первичных фотонов, охладившимся до нескольких градусов выше абсолютного нуля за 15 миллиардов лет космического расширения.{128} В 1965 г. Арно Пензиас и Роберт Вильсон из Лаборатории им. Белла в штате Нью-Джерси случайно сделали одно из важнейших открытий нашей эпохи. Работая с антенной, предназначенной для спутниковой связи, они зарегистрировали послесвечение Большого взрыва! Позднее и теория, и эксперимент были усовершенствованы, и эти исследования завершились измерениями, полученными с помощью спутника COBE (Cosmic Background Explorer, «зонда космического фона») агентства NASA в 1990-е гг. На основе полученных данных физики и астрономы точно установили, что Вселенная действительно заполнена микроволновым излучением с температурой примерно на 2,7 K выше абсолютного нуля (если бы наши глаза были чувствительны к микроволнам, мы увидели бы рассеянное свечение вокруг нас), что в точности совпадает с предсказаниями теории Большого взрыва. Более точно, в каждом кубическом метре Вселенной (включая тот объём, который вы сейчас занимаете) находится около 400 миллионов фотонов, образующих огромное космическое море микроволнового излучения — эхо сотворения. Часть «снега» на экране телевизора, когда вы переключаетесь на канал, на котором закончилось вещание, объясняется именно этим туманным откликом Большого взрыва. Согласие между теорией и экспериментом служит подтверждением космологической картины Большого взрыва до момента времени, когда фотоны начали свободное движение по Вселенной, т. е. примерно до нескольких сотен тысяч лет после Большого взрыва.

Можно ли в наших исследованиях теории Большого взрыва продвинуться ещё дальше вглубь времён? Можно. Используя законы обычной ядерной физики и термодинамики, можно сделать определённые предсказания об относительном проценте лёгких элементов, образованных во время первичного нуклеосинтеза, т. е. в период примерно от сотых долей секунды до нескольких минут после Большого взрыва. Например, теория говорит о том, что Вселенная примерно на 23 % должна состоять из гелия. Измерения содержания гелия в звёздах и туманностях действительно подтверждают это предсказание. Возможно, ещё более впечатляющим является подтверждение предсказания о содержании дейтерия, так как его малое, но ощутимое присутствие в космосе не может объясняться никакими другими астрофизическими явлениями, кроме Большого взрыва. Подтверждение этих предсказаний, а также более позднее подтверждение предсказания содержания лития говорят об успешной проверке гипотез о физике ранней Вселенной вплоть до момента первичного синтеза.

Всё это настолько впечатляет, что хочется возгордиться успехами. Все данные, которыми мы располагаем, подтверждают космологическую теорию, описывающую эволюцию Вселенной от сотых долей секунды после Большого взрыва до настоящего времени, отделённого от начала интервалом времени в 15 миллиардов лет. Однако не следует забывать о том, что новорождённая Вселенная развивалась с феноменальной скоростью. Мельчайшие доли секунды, гораздо меньшие сотых долей, суть космические эпохи, в течение которых формировались кажущиеся нам неизменными свойства окружающего мира. Поэтому физики продолжали движение вперёд, пытаясь объяснить, что происходило во Вселенной в ещё более ранние моменты. Так как при движении вспять во времени Вселенная становится всё горячее, меньше и плотнее, всё очевиднее потребность в квантовом описании материи и взаимодействий. Как мы видели с других точек зрения в предыдущих главах, квантовая теория поля точечных частиц справедлива лишь тогда, когда средние энергии частиц не превышают планковскую энергию. С точки зрения космологии этот предел соответствует моменту, когда вся окружающая нас Вселенная была сжата до размера мельчайшего зерна планковских размеров, а плотность была так высока, что сложно подыскать подходящую метафору, которая проиллюстрировала бы эту ситуацию: плотность Вселенной в эти моменты времени была просто колоссальной. При таких энергиях и плотностях гравитация и квантовая теория уже не могут рассматриваться как две различных сущности, каковыми они являлись в квантовой теории поля точечных частиц. Вместо этого — и в этом состоит смысл содержания данной книги — анализ должен базироваться на теории струн. На временной шкале такие энергии и плотности соответствуют точкам, удалённым от Большого взрыва менее чем на планковское время 10−43 с, следовательно, эта сверхранняя эпоха является космологической ареной теории струн.

Мы начнём экскурсию в эту эпоху с обсуждения предсказаний стандартной космологической модели о Вселенной в моменты времени, меньшие сотых долей секунды, но бо́льшие планковского времени.

От планковских времён до сотых долей секунды после Большого взрыва

Вспомним из главы 7 (обратите особое внимание на рис. 7.1), что в раскалённой среде ранней Вселенной три негравитационных взаимодействия оказываются связанными воедино. Расчёты зависимости силы этих взаимодействий от энергии и температуры показывают, что до моментов примерно через 10−35 с после Большого взрыва сильные, слабые и электромагнитные взаимодействия были одним «великим объединённым» взаимодействием. В этом состоянии Вселенная была гораздо более симметричной, чем сейчас. Подобно тому, как при плавке нескольких предметов из различных металлов получается однородная расплавленная смесь, при огромных температурах и энергиях ранней Вселенной все наблюдаемые различия между этими взаимодействиями пропадали. Но по мере того как Вселенная расширялась и охлаждалась, такая симметрия, как следует из формализма квантовой теории поля, разрушалась довольно резкими скачками и, в конце концов, привела к знакомой нам сравнительно асимметричной форме.

Нетрудно понять физический смысл этого понижения или нарушения симметрии, как его называют физики. Когда в резервуаре равномерно распределены молекулы H2O, вода выглядит одинаково вне зависимости от того, под каким углом на неё смотреть. Рассмотрим, однако, что происходит при уменьшении температуры. Сначала всё выглядит как обычно. На микроскопических масштабах уменьшается средняя скорость молекул воды — только и всего. Однако при понижении температуры до 0° C внезапно происходят радикальные перемены. Жидкая вода замерзает и превращается в лёд. Как обсуждалось в предыдущей главе, это простой пример фазового перехода. Но сейчас для нас важно то, что при уменьшении температуры происходит уменьшение симметрии, которую проявляют молекулы H2O. В то время как жидкая вода выглядит одинаково под любым углом наблюдения, демонстрируя симметрию относительно вращений, твёрдый лёд выглядит совершенно иначе. Он обладает кристаллической структурой, т. е. если исследовать лёд с должной точностью, он, как и любой кристалл, будет выглядеть по-разному при наблюдении под разными углами. Фазовый переход приводит к явному уменьшению вращательной симметрии.

И хотя мы рассмотрели лишь один знакомый пример, это утверждение справедливо в более общем случае: при понижении температуры во многих физических системах происходит фазовый переход, который обычно сопровождается уменьшением или «нарушением» некоторых исходных симметрий системы. В действительности система может испытывать последовательность фазовых переходов при изменении температуры в достаточно широких пределах. Простейшим примером снова служит вода. При температурах выше 100° C она представляет собой газ (пар). В этом состоянии у системы даже больше симметрий, чем в жидком, так как в этом случае молекулы H2O не связаны вместе в одну плотную жидкую упаковку, а предоставлены сами себе. Все они равноправны и носятся по всему резервуару, не образуя скоплений или групп, по которым молекулы можно было бы различать исходя из близости к соседям. При высоких температурах господствует полная демократия и симметрия. При понижении температуры за 100-градусную отметку, естественно, начинают формироваться капли, и симметрия уменьшается. Дальнейшее понижение температуры не приводит к серьёзным последствиям, пока не перейдена нулевая отметка, и в этот момент происходит фазовый переход из жидкости в лёд, который также сопровождается резким уменьшением симметрии.

1 ... 89 90 91 92 93 94 95 96 97 ... 116
Перейти на страницу:
Тут вы можете бесплатно читать книгу Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Брайан Грин.
Комментарии