Вселенная, жизнь, разум - И Шкловский
Шрифт:
Интервал:
Закладка:
Советский радиоастроном Ю. Н. Парийский на Бюраканском симпозиуме предложил другой путь реализации проекта установления радиоконтакта с внеземными цивилизациями. Это - создание "глобального радиотелескопа", сводящееся к объединению всех существующих на Земле крупных радиотелескопов в единую систему. В сочетании с радиотелескопами, вынесенными в космос, мы можем иметь исключительно эффективное устройство для поисков радиосигналов от внеземных цивилизаций.
Таким образом, недостатка в проектах нет... Однако реальных наблюдений проводилось пока очень мало. Да и сами наблюдения не были должным образом обеспечены. Они носили, по существу, "рекогносцировочный" характер. Есть, однако, основания полагать, что в близком будущем положение может коренным образом измениться к лучшему.
# За 25 лет с момента начала исследований было выполнено около 50 наблюдательных работ главным образом в радиодиапазоне. Участвовали Австралия, Нидерланды, Канада, СССР, США, Франция, ФРГ и Япония. Всего было около 120 000 часов наблюдений, из них около 100 000 часов - по специально предназначенным программам. Радиообсерватории Огайского университета и Гарвард-Смитсонианская работают по этой программе 24 часа в сутки. Техника приема и анализа сигналов первоначально была самой примитивной, но постоянно совершенствуется.
Салливан и Ноулесс провели исследование отраженных от Луны радиосигналов Земли с целью установить, каков радиоспектр Земли, если нас наблюдают из далекого космоса. Наблюдения проведены с помощью 300-метровой антенны в Аресибо в диапазоне 150-500 МГц. На рис. 101 показаны спектры Земли в различные моменты по всемирному времени в диапазоне, связанном с наземными телевизионными станциями. В результате этой работы ученые обнаружили самый мощный радар США, работающий на частоте 217 МГц и излучающий импульсы мощностью 14 млрд. ватт в полосе 0,12 Гц. Такие импульсы могут быть обнаружены другой цивилизацией с такой же, как в Аресибо, антенной с расстояния около 20 световых лет. Сильнейшие телевизионные станции могут быть обнаружены с расстояния около 3 световых лет.
Необходимо иметь в виду, что поиск радиосигналов от внеземных цивилизаций - задача с очень многими неизвестными, хотя их количество и небесконечно: положение источника на небе, частота, интенсивность сигнала, полоса, поляризация, модуляция, длительность передач и пауз. Многие ожидают, что искомые сигналы должны быть очень узкополосными, и поэтому для их обнаружения необходимы многоканальные спектроанализаторы (МКСА). В настоящее время в США ведутся наблюдения с МКСА на 65 536 каналах с разрешением 0,03 Гц и заканчивается создание системы на 8,25 миллиона каналов, которая будет установлена на радиотелескопе с диаметром зеркала 64 м Центра дальней космической связи в Голдстоуне. К 1990 г. этот спектроанализатор сможет исследовать любую полосу шириной 8 МГц с разрешением 1 Гц. НАСА предполагает провести к концу этого столетия программы "Обзор неба" (наблюдение всей небесной сферы в диапазоне от 3 до 30 см со спектральным разрешением 32 Гц) и программу "Направленный поиск" (исследование 1000 избранных объектов в диапазоне 18-21 см, так называемое "водяное окно" между линиями гидроксила и атомарного водорода, с разрешением 1 Гц); в программу входят 773 звезды классов F, G и K, похожие на Солнце и находящиеся на расстояниях до 80 световых лет от нас.
В Советском Союзе программа поиска связывается с сооружением в горном районе Узбекистана крупнейшего радиотелескопа с зеркалом диаметром 70 м, работающего как раз в оптимальном для поиска диапазоне миллиметровых радиоволн.
На рис. 102 (не сканировался) приведено фото макета радиотелескопа. С помощью этого инструмента предполагается провести программу направленного поиска и исследования подозреваемых объектов. Напомним, что миллиметровый диапазон является оптимальным как для поиска радиосигналов искусственного происхождения, так и для обнаружения огромных астроинженерных конструкций, находящихся при очень низкой температуре. #
Пока сделаны только первые шаги в направлении "подслушиваний" межзвездных переговоров. Может быть, недалеко то время, когда мы начнем "возвещать" о своем существовании путем посылки радиосигнала в космосе.
21. Возможность осуществления межзвездной связи оптическими методами.
В предыдущей главе мы довольно подробно обсуждали возможности радиосвязи между инопланетными цивилизациями. Является ли, однако, радиосвязь единственно возможным видом связи на межзвездных расстояниях? Несомненно, радиоволны для такой задачи обладают рядом ценных преимуществ. Основные преимущества сравнительно малая мощность передатчика, посылающего сигналы на расстояния в десятки световых лет и дальше, возможность легко отделить искусственный сигнал от теплового радиоизлучения звезды и высокая разрешающая способность по частоте у приемной аппаратуры. Последнее свойство после детального изучения сигнала позволяет получить ряд важных сведений об излучающей его планетной системе, а также информацию о разумных существах, ее населяющих.
Несмотря на все очевидные преимущества радиосвязи между удаленными на межзвездные расстояния цивилизациями, необходимо все же обсудить другие возможные типы связи. В первую очередь мы рассмотрим интересный вопрос о возможности такой связи на очень высоких частотах оптического и примыкающих к нему диапазонов.
Казалось бы, посылка от одной планеты к другой по возможности узкого светового пучка - очевидное, принципиально простое, средство связи. Однако на пути осуществления такого "межзвездного прожектора" встречаются очень большие трудности. Дело в том, что прожекторы обычного типа, даже самые совершенные, посылают не параллельный пучок света, а слегка расходящийся, что объясняется невозможностью создать точечный источник света в фокусе. Вот в этом-то "слегка" и заложена вся трудность проблемы. Если на обычных, "земных" расстояниях расхождение пучка из-за его непараллельности сравнительно невелико, то на межпланетных, не говоря уже о межзвездных, расстояниях оно становится уже недопустимым. Пусть, например, угол раствора конуса, в котором сосредоточен поток излучения, посылаемый прожектором, равен 30 мин. дуги, как у лучших из современных прожекторов. Тогда на расстоянии 50 км диаметр сечения луча прожектора будет около 450 м и поток энергии через единицу поверхности (определяющий освещенность предмета, на который направлен прожектор) будет еще достаточно велик. Например, если мощность излучения прожектора равна 10 кВт, поток энергии через 1 см2 на расстоянии 50 км от нашего прожектора будет 5 10-6 Вт. Хотя эта величина в несколько десятков тысяч раз меньше потока солнечного излучения, в ночных условиях предмет будет освещен и вполне заметен.
(adsbygoogle = window.adsbygoogle || []).push({});