Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Математика » ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.

Читать онлайн ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 92 93 94 95 96 97 98 99 100 ... 233
Перейти на страницу:

Однако существуют аспекты нашего мышления, не поддающиеся контролю. Мы не можем, по желанию, стать сообразительнее; не можем выучить новый язык так быстро, как бы нам хотелось; не можем заставить себя думать о нескольких вещах сразу и так далее. Это знание о нашей природе столь изначально, что его даже трудно заметить; это все равно, что постоянно сознавать, что вокруг нас — воздух. Мы никогда не думаем о возможной причине подобных «дефектов» нашего интеллекта — устройстве нашего мозга. Основная цель этой книги — предложить пути примирения между аппаратурой — мозгом и программным обеспечением — интеллектом.

Промежуточные уровни и погода

Мы видели, что в компьютерных системах есть множество довольно четко определенных уровней, и что работающая программа может быть описана в терминах любого из них. Таким образом, существуют не только низший и высший уровни — есть самые различные степени низкого и высокого. Типичны ли промежуточные ступени для всех систем с низшими и высшими уровнями? Рассмотрим для примера систему, аппаратурой которой является земная атмосфера, а программным обеспечением — погода. Проследить за движением всех молекул одновременно было бы способом «понимания» природы на весьма низком уровне — что-то вроде работы с огромной сложной программой на машинном языке. Ясно, что эта задача лежит далеко за пределами человеческих возможностей. Однако у нас есть наш особый, человеческий способ наблюдения за погодными явлениями и их описания. Мы воспринимаем природные явления на высоком уровне — крупными блоками, такими, как дождь, снег, туман, ураганы, холодные фронты, времена года, атмосферное давление, ветры, течения, кучевые облака, грозы, уровни инверсии и так далее. Во всех этих явлениях участвует астрономическое число молекул, которые каким-то образом действуют вместе, давая крупномасштабный эффект. Этот метод сравним с использованием для анализа погоды языка компилятора.

Существует ли аналог исследованию погоды при помощи промежуточных языков, таких, как язык ассемблера? Бывают ли, к примеру, очень маленькие местные «мини-штормы», как те крохотные смерчи, крутящие пыльные столбы максимум пару метров в диаметре? Является ли порыв ветра блоком промежуточного уровня, играющим роль в создании погодных явлений более крупного масштаба? Или же не существует практического способа использовать наши знания о подобных явлениях с тем, чтобы получить более полное объяснение погоды?

Тут возникают еще два вопроса. Первый такой: «Может ли быть, что погодные явления, воспринимаемые нами как смерчи и засухи, на самом деле — лишь явления промежуточных уровней, составляющие часть каких-то более общих, медленно протекающих явлений?» В таком случае, погодные явления настоящего высшего уровня были бы глобальными, и их время измерялось бы по геологической шкале. Ледниковый период был бы погодным событием такого высшего уровня. Второй вопрос: «Есть ли такие погодные явления промежуточного уровня, которых люди до сих пор не замечали, но которые могли бы дать нам более глубокое понимание погоды?»

От смерчей к кваркам

Последнее предположение может звучать, как чистая фантазия, но это не совсем так. Стоит только взглянуть на точнейшую из точных наук, физику, чтобы найти необычные примеры систем, описанных в терминах взаимодействия таких «частей», которые сами по себе невидимы. В физике, как и в любой другой дисциплине, системой считается группа взаимодействующих частей. В большинстве известных нам систем части сохраняют свою индивидуальность при взаимодействии, так что мы можем различить их внутри системы. Например, когда собирается футбольная команда, ее игроки продолжают быть отдельными личностями, они не сливаются, теряя свою индивидуальность, в какое-то составное существо. И все же — и это очень важно — определенные процессы в их мозгу вызваны именно контекстом команды, вне которого эти процессы не происходили бы. Таким образом, в некотором смысле индивидуальность игроков меняется, когда они становятся частью большей системы — команды. Такой тип системы называется почти разложимой системой (термин взят из статьи Г. А. Саймона «Архитектура сложности» (H. А. Simon, «Architecture of complexity»). Подобная система состоит из слабо взаимодействующих модулей, которые сохраняют свою собственную индивидуальность во время взаимодействия, но, слегка меняясь по сравнению с тем, какими они бывают вне системы, тем самым способствуют связному поведению целой системы. Изучаемые в физике системы обычно принадлежат именно к такому типу. Считается, например, что атом состоит из ядра, положительный заряд которого удерживает на орбите, или в связанном состоянии, некоторое количество электронов. Связанные электроны весьма похожи на свободные электроны, несмотря на то, что они находятся внутри сложной системы.

Некоторые системы, изучаемые в физике, представляют собой контраст по сравнению с относительно простым атомом. В таких системах взаимодействие частей необычайно сильно, в результате чего они проглатываются большей системой и частично или полностью теряют свою индивидуальность. Примером является ядро атома, которое обычно описывается как «набор протонов и нейтронов». Но силы, удерживающие вместе частицы, составляющие ядро, так велики, что эти частицы становятся совершенно непохожи на самих себя в «свободной» форме (то есть когда они находятся вне ядра). На самом деле, ядро во многих смыслах более похоже на единую частицу, чем на набор взаимодействующих частиц. Когда ядро расщепляется, при этом обычно освобождаются протоны и нейтроны, но также и другие частицы, такие как пи-мезоны и гамма-лучи. Находятся ли все эти частицы внутри ядра до его расщепления, или же они — что-то вроде «искр», летящих при расщеплении ядра? Возможно, что искать ответа на подобный вопрос не имеет смысла. На уровне физики частиц разница между возможностью «высекать искры» и действительным наличием субчастиц не столь ясна.

Таким образом, ядро — это система, «части» которой, хотя они и невидимы внутри системы, могут быть извлечены и сделаны видимыми. Однако есть и более патологические случаи, такие, как протон и нейтрон, взятые как системы. Существует предположение, что каждый из них состоит из тройки «кварков» — гипотетических частиц, которые могут соединяться по две или по три, образуя при этом многие из известных основных частиц. Однако взаимодействие между кварками настолько сильно, что их не только невозможно увидеть внутри протонов и нейтронов, но и невозможно извлечь оттуда! Таким образом, хотя кварки помогают теоретически объяснить некоторые свойства протонов и нейтронов, их собственное существование, возможно, никогда не будет установлено с достоверностью. Здесь перед нами — антипод «почти разложимой системы», система, которую скорее можно назвать «почти неразложимой». Интересно, однако, что теория протонов и нейтронов (и других частиц), основанная на «модели кварков», дает хорошее количественное объяснение многих экспериментальных результатов, касающихся частиц, предположительно составленных из кварков.

Сверхпроводимость: «парадокс» ренормализации

В главе V мы обсуждали то, как ренормализованные частицы возникают из своих голых центров в результате рекурсивно накапливающихся взаимодействий с виртуальными частицами. Ренормализованную частицу можно рассматривать либо как это сложное математическое построение, либо как некий «бугорок», чем она и является физически. Одно из самых странных и впечатляющих последствий этого способа описания частиц — это объяснение, которое оно дает знаменитому явлению сверхпроводимости (свободному от сопротивления течению электронов в некоторых твердых телах при очень низких температурах).

Оказывается, что электроны в твердых телах ренормализованы в результате их взаимодействия с некими странными квантами вибраций, называемыми фононами (которые, в свою очередь, ренормализованы!). Такие ренормализованные электроны называются поляронами. Вычисления показывают, что при низких температурах два полярона с противоположным спином начинают притягивать друг друга и могут стать определенным образом связанными. При некоторых условиях все поляроны, переносящие ток, связываются по два, образуя так называемые куперовы пары. Парадоксально то, что образование этих пар происходит именно потому, что электроны — голые центры спаренных поляронов — электрически отталкиваются друг от друга. В отличие от электронов, куперовы пары не притягиваются и не отталкиваются; поэтому они могут свободно перемещаться в металле, словно в вакууме. Изменив математическое описание подобного металла с такого, чьими основными единицами являются поляроны, на такое, чьи основные единицы — куперовы пары, вы получите значительно упрощенный набор уравнений. Эта математическая простота указывает на то, что деление на «блоки» куперовых пар — естественный взгляд на сверхпроводимость.

1 ... 92 93 94 95 96 97 98 99 100 ... 233
Перейти на страницу:
Тут вы можете бесплатно читать книгу ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р..
Комментарии