Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Медицина » ЯЗЫКИ МОЗГА Экспериментальные парадоксы и принципы нейропсихологии - К.ПРИБРАМ

ЯЗЫКИ МОЗГА Экспериментальные парадоксы и принципы нейропсихологии - К.ПРИБРАМ

Читать онлайн ЯЗЫКИ МОЗГА Экспериментальные парадоксы и принципы нейропсихологии - К.ПРИБРАМ

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 9 10 11 12 13 14 15 16 17 ... 95
Перейти на страницу:

Удивительно, что наши глаза находятся в постоянном движении – даже тогда, когда мы фиксируем точку. Эти небольшие, подобные тремору движения глаз можно зарегистрировать. Такие движения у некоторых людей настолько велики, что заметны другим, но – и в этом-то и состоит парадокс – человек с такими усиленными движениями глаз не знает о них до тех пор, пока не обратит на них внимание, когда смотрит на себя в зеркало (что обычно заставляет его обратиться к врачу, который, если он знаком с такой аномалией, успокаивает своего пациента, говоря, что это не опасно). Движения глаз препятствует тому, чтобы каждый из рецепторных элементов в течение какого-то отрезка времени возбуждался бы одним и тем же соотношением света и темноты, конечно, за исключением таких ситуаций, как плотный туман, когда свет теряет форму и функция зрения сводится к различению яркости. Чтобы изучить последствия нарушений таких движений глаз, на склере, белой части глазного яблока, не обладающей чувствительностью, укрепляют зеркало. Изображение проецируется на зеркало, отражается через призму на гладкую поверхность экрана, на которую смотрит наблюдатель. Призма корректирует отклонения рассматриваемого объекта, соответствующие отклонениям глазного яблока. Благодаря этому изображение, проецируемое на поверхность, всегда падает на одно и то же место сетчатки и образ стабилизируется (рис. Ш-3).

Стабилизированное изображение быстро становится незаметным. Зрительный прибор за несколько секунд так адаптируется, что изображение не может оставаться видимым – оно исчезает, адаптация завершена. Сходный опыт можно провести и в кожно-кинестетической системе: положите предмет на руку и некоторое время подержите его. Скоро ощущение наличия объекта исчезает.

Если бы не было такого механизма, организм подвергался бы непрерывной бомбардировке раздражителей разной длительности и интенсивности и это сделало бы его неспособным к тонкому различению. Фактически возможность зрительного различения, несмотря на изменение фонового освещения в диапазоне от 10 миллиардов до единицы, составляет одно из тех противоречий, которые вызывают большой поток исследований. В данном случае исследования адаптации сетчатки привели к открытию соответствующих нейронных механизмов. Это противоречие получило объяснение в концепции, согласно которой адаптация сетчатки целиком объясняется выцветанием и регенерацией фоточувствительного пигмента, содержащегося в рецепторах сетчатки (Hecht, 1934). Однако в последнее время стали накапливаться данные, говорящие о том, что для объяснения процесса адаптации необходимы и нефотохимические факторы я что эти факторы являются основой для осуществления фотохимических процессов (см. Rushton, в обзоре Dowling, 1967).

Главным инструментом в этих и‹ следованиях служит большой электрод, который помещают па внешней стороне глаза.

Рис. Ш-3. Благодаря тому, что стимул, прежде чем воздействовать на сетчатку, первоначально отражается от зеркала, укрепленного на склере и перемещающегося вместе с движениями глаз, последние могут быть компенсированы с такой точностью, что изображение раздражителя на сетчатке становится стабилизированным (см. Riggs et al, 1953).

Этот электрод записывает изменения потенциалов, генерируемых всей сетчаткой, в виде электроретинограммы. При соответствующих методах анализа получают такие же четкие ответы, как и тогда, когда используют микроэлектродную технику.

Коротко говоря, сетчатка млекопитающего состоит из нескольких слоев: рецепторный слой образован клетками, имеющими форму палочек и (или) колбочек, в которых имеются фоточувствительные химические пигменты; реагирующий первичный слой состоит из клеток, в которых процессы распространяются торизонтально и связывают друг с другом множество соседних клеток сетчатки; биполярный слой состоит из клеток, связывающих один или несколько рецепторов с ганглиозными клетками, являющимися началом выхода импульсов из сетчатки к мозгу ‹рис. Ш-4).

Рис. Ш-4. Схема строения сетчатки приматов, показывающая синапсы между различными типами клеток, наблюдаемые с помощью электронного микроскопа на серийных срезах. Обратите внимание на контакты между рецепторами, на широко распространенные связи горизонтальных и ама-криновых клеток и вертикальное расположение биполяров. Вздутые центральные окончания биполярных клеток формируют так называемые диад-ные синапсы (в рамке) с гаяглиозной клеткой и одновременно с амакри-новой клеткой. П – палочка; К – колбочка; кб – карликовый биполяр; по – палочковый биполяр; плб – плоский €иполяр: г – горизонтальная клетка; а – амакриновая клетка; кг – карликовая ганглиозная клетка; д – диадный синапс; дг – диффузная ганглиозная клетка; н – ножка. В прямоугольной рамке вверху справа показаны детали типичною диадного синапса (Horridge, 1968; Dowling and Boycott, 1966).

Электроретинограмма включает в себя два компонента: малую а- и большую e-волну; а-волна, по-видимому, генерируется более периферической частью сетчатки, чем e-волна. Это обнаруживается при наложении на зрительный нерв зажима. В результате этой операции нарушается кровообращение в сетчатке, за исключением тех сосудов, которые питают рецепторы. В таком препарате остаются только а-волны.

Сходную процедуру можно применить и для разрушения ганглиозных клеток, образующих самый глубокий слой сетчатки; рассечение зрительного нерва вблизи его начала вызовет дегенерацию большинства тел порождающих импульсы ганглиозных клеток. Электроретинограмма в результате этой процедуры, по-видимому, не нарушается; фактически адаптация в таких препаратах остается нормальной. Таким образом, этот самый глубокий слой сетчатки не может быть источником ни а- ни, e-волн. Это -значит, что генераторами e-волны являются средние слои сетчатки.

Процесс адаптации для а- и e-волн различен. Адаптация а-волны не отражает хода психофизической адаптации, и поэтому мы не будем рассматривать ее здесь подробно. Напротив, адаптация e-волны происходит параллельно психофизической адаптации и ее механизм является для нас центральным.

Ряд остроумных экспериментов принес подтверждение концепции, согласно которой адаптация является функцией не отдельных клеток сетчатки, а целой группы нейронов, составляющих нейронную сеть сетчатки. Типичный эксперимент показывает, что чувствительность к свету остается одной и той же, когда на сетчатку проецируется рисунок в виде чередования темных и светлых полос или когда она освещается светом той же средней интенсивности, но равномерно распределяемым по ловерхности. Этот тип исследований находит логическое завершение в эксперименте, в котором было показано, что освещение одной части зрительного рецептивного поля одиночной ганглиозной клетки (определяемого с помощью микроэлектрода) вызывает процесс адаптации в другой его части.

Множество данных говорит о том, что биполярные клетки и клетки, осуществляющие взаимодействие в среднем слое сетчатки, являются генераторами e-волны и местом психофизической адаптации. Некоторые исследователи (например, Fuortes, Hodgkin, 1964; Rushton, 1963; Dowling, 1967) считают, что нейронная адаптация возникает в результате действия механизма обратной связи, когда сигнал с одной ступени посылается вазад на предыдущую ступень и таким образом снижает ее чувствительность. Недавно Дж. Даулинг и Б. Бойкотт (1965)' показали с помощью электронного микроскопа, что контакты биполярной, амакриновой и ганглиозной клеток могут функционировать точно таким же способом. Были открыты реципрокные синапсы, они делают возможным движение возбуждения назад", от амакриновой клетки к биполярной, от которой амакриновая клетка ранее получила возбуждение. Подразумевается, что эта обратная связь является отрицательной, что создает систему сервомеханизма, но это утверждение нуждается в более прямом доказательстве (рис. Ш-5).

Р и с. Ш-5. Зарисовка нейрона в зрительной системе мозга (латеральное коленчатое тело), иллюстрирующая синаптические контакты. Обратите внимание, что, как и в сетчатке, пузырьки, содержащие химический возбудитель, находятся иногда на дальней стороне, иногда – на ближней стороне синаптической щели, показывая, что нейрон посылает сигналы и воспринимает их (обозначено направлением стрелок). Эта двойная направленность связей (диадные синапсы) делает возможной обратную связь (Ralston, 1971).

УСИЛЕНИЕ КОНТРАСТА

Затухание нейронных ответов само по себе не может объяснить, каким образом формируется «нейронная модель» памяти,, с которой сравниваются последующие воздействия. Как мы уже говорили, полученные при изучении поведения данные свидетельствуют о том, что даже при малейшем изменении сложного стимула, к которому организм обнаружил привыкание, возникает растормаживание. Необходима определенная преобразующая организация нейронных явлений. Как же осуществляется такая организация?

1 ... 9 10 11 12 13 14 15 16 17 ... 95
Перейти на страницу:
Тут вы можете бесплатно читать книгу ЯЗЫКИ МОЗГА Экспериментальные парадоксы и принципы нейропсихологии - К.ПРИБРАМ.
Комментарии