ЯЗЫКИ МОЗГА Экспериментальные парадоксы и принципы нейропсихологии - К.ПРИБРАМ
Шрифт:
Интервал:
Закладка:
0 означает AAA
1 означает ААВ
2 означает ABA
3 означает ABB
4 означает ВАА
5 означает ВАВ
6 означает ВВА
7 означает ВВВ
и любую последовательность из 12 включений и выключений можно описать и запомнить в виде четырех цифр, например представленные ранее последовательности превращаются в 3047, 1213, 2722. Это преобразование, названное «восьмиричным» кодированием двоичной системы, удивительно экономно. Каким же образом стало возможно столь замечательное достижение? (Этот -совершенный способ нелегко приобретается нервной системой; благодаря повторению процесса обеспечивается классификация по иерархическим схемам, а классификация – наиболее фундаментальная логическая процедура.) Чтобы получить ответ, сформулируем проблему более конкретно: каким образом может происходить преобразование одной структуры, сложность которой яредставлена системой связей между простыми элементами, в другую структуру, сложность которой определяется самими элементами и их уникальным назначением? Такое преобразование может быть осуществлено с помощью простой системы конвергентных единиц, названных инженерами функциями «и», так как их реакция возникает в ответ на одновременный приход сигналов (см. рис. IV-1 и IV-2). Такую систему пересекают пути, выполняющие функцию параллельного торможения – «не или», – которая реализуется через комбинацию функций «или» (у которых выходной сигнал определяется воздействием через любой из двух входов) и отрицательной функцией «не», тормозящей выходной сигнал элемента, когда каким-либо образом активируется «го вход. Эта система так напоминает структуру сетчатки – наше -окно в мозг, что испытываешь искушение назвать функцией «не или» гиперполяризацию горизонтального слоя и функцией «и» – разряд ганглиозной клетки. Конечно, сетчатка построена не вполне так, как показано на этой схеме, однако обе формы организации поразительно соответствуют друг другу с точки прения рассматриваемого процесса (ср. рис. IV-2 и IV-3).
Таким образом, перекодирование оказывается чрезвычайно эффективной частью процесса памяти, для осуществления которого конструкция нервной системы, по-видимому, великолепно .приспособлена. Формы перекодирования, которые возможны в нервной системе, фактически безграничны. Тем не менее можно выделить несколько классов кодов.
ТИПЫ НЕРВНЫХ КОДОВМы уже разделили коды на два класса: коды, предполагающие дискретные импульсы нервного разряда, и коды, предполагающие микроструктуру устойчивого состояния, создаваемую нервными соединениями.
Проблема импульсного кодирования не сводится к вопросу о присутствии или отсутствии сигнала; импульсный код может использовать множество различных параметров, которые характеризуют последовательности залпов.
Рис. IV-4. Кодирование интенсивности и места раздражения, осуществляемое параллельными волокнами. Пространственное представительство показано в соответствии с тем, что было обнаружено в тактильных афферентах задней лапы кошки, когда последняя возбуждалась механическими залпами, приложенными к одной точке; диаграмма основывается на количественных экспериментальных данных. Если число равноотстоящих рецепторов с 3 уровнями возбудимости соответствует схеме е, то раздражитель интенсивностью в два порога вызывает некоторое число импульсов в стороне от раздражаемой точки и через какое-то время после раздражения а. Пунктирная линия обозначает латентный период, обусловленный временем распространения механической волны по лапе. Более сильные раздражители вызывают ответы, показанные на рис. б-г. Общее число импульсов в ответ на каждую интенсивность раздражителя представлено в д (Gray and Lai, 1965).
Д. Перкел и Т. Буллок (Perkel and Bullock, 1968), изучал сигналы, посылаемые электрическими органами некоторых рыб, установили следующие типы кодирования. При той или: иной комбинации условий изменяется длительность латентного периода, продолжительность спайковых взрывов, общая вероятность разрядов и вариация этой вероятности, увеличивается или уменьшается частота разрядов или скорость ее изменения. Такими условиями являются искажения электрического поля, создаваемые теми же самыми сигналами, посылаемыми электрическими органами, – искажения, регистрируемые системой боковой линии рыбы, этот процесс сходен с радарным.
Кроме этих организованных во времени кодов, имеет место и пространственное кодирование, когда множество параллельных линий – нервных волокон – продуцируют то, что Перкел и Буллой назвали обработкой «по ансамблю», которая зависит от различий в распределении последовательностей импульсов вдоль линий (см. рис. IV-4).
Пространственное кодирование и особенно кодирование, опирающееся на различия в синхронности разрядов у соседних групп нервов, тесно связано с целой группой процессов неимпульсного кодирования – микроструктурами медленных потенциалов, обеспечивающих устойчивое состояние, которые вносят существенный вклад в активность серого вещества мозга млекопитающих. Как говорят Перкел и Буллок, должно существовать какое-то считывающее устройство, какой-то механизм в центральной нервной системе, который считывает сообщения, закодированные в импульсной форме. В этих главах утверждается, что такое считывание возникает на местах соединений нейронов в процессе образования микроструктур медленных потенциалов, мгновенных состояний, возникающих в результате взаимодействия между совокупностями сигналов, действующих по соседству и кодируемых последовательностью импульсов.
СПОНТАННАЯ АКТИВНОСТЬ НЕРВНОЙ ТКАНИЧтобы быть эффективными, большинство кодов нуждается в некотором стабильном уровне Работа Бернса и других, вне веяного сомнения, установила, что активность центральной нервной системы обладает такой стабильностью Нервная ткань спонтанно генерирует электрические потенциалы Мозг, как и сердце, непрерывно пульсирует И, так же как в сердце, такую пульсацию вызывают медленные потенциалы, а возникновение этих последних зависит от определенных констант химического окружения, в котором находится пульсирующая 1кань (рис IV-5).
Рис IV-5. Церебральная симфония (Verzeano et al, 1970).
Серии тщательно проведенных исследований в лаборатории Бернса (1958) дали исчерпывающий ответ на вопрос, который долгое время оставался фантастическим: может ли мозг сохранять активность даже в том случае, если он полностью изолирован (нейронально) от другой нервной ткани? Результаты этих экспериментов, как это часто бывает, не подтвердили полностью ни представления о том, что активность головного мозга «спонтанна», ни представления о мозге как находящейся в покое tabula rasa, на которую записывается сенсорный опыт. Берне обнаружил, что даже у неанестезированного животного изолированная полоска коры остается неактивной до тех пор, пока к ней хотя бы на короткое время не будет приложено электрическое раздражение; другие же данные (Echlin et al., 1952; Gerard and Joung, 1937; Henry and Scoville, 1952; Ingvar, 1955; Libet and Gerard, 1939) указывают на то, что спонтанная активность существует и в таких препаратах. В любом случае, даже если принять осторожный вывод, сделанный Бёрнсом, несколько сильных электрических раздражителей, приложенных к поверхности коры, вызывают серию разрядов нейронной активности, которая обычно продолжается в течение многих минут (или даже часов) после прекращения стимуляции.
Периодические волны возбуждения могут быть получены и в диффузно организованной нервной ткани при ее электрическом раздражении. Они сходны с волнами возбуждения, возникающими в неанестезированной коре головного мозга в ответ на воздействие нескольких редких стимулов. Эффекты, длящиеся многие часы, наблюдались после короткой стимуляции интактной актинии (Batham and Pantin, 1950). Недавно был описан люминесцентный ответ у морских «анютиных глазок» (вид цветного коралла): после серий раздражений эти колонии начали люминесцировать спонтанно, а не только в ответ на стимуляцию. Для объяснения этого явления следует обратиться к механизму медленных изменений состояния нервной ткани (элементарной форме памяти, связанной с медленными потенциалами?) Эти изменения обусловлены влиянием окружающей среды и зависят, разумеется, от предшествующей активности организма. Но они также имеют свои внутренние закономерности и свой собственный ритм активности, который вызывает повторные изменения состояний нервной ткани, что делает их в каждый момент времени лишь частично зависимыми от влияний окружающей среды.
Короче говоря, принято считать, что группы нейронов того типа, которые найдены в коре головного мозга, в отсутствие непрерывного сенсорного воздействия находятся в состоянии покоя. Однако эти группы нейронов могут легко приходить в состояние- возбуждения и обнаруживать длительную активность. Значит, можно считать, что во время «покоя» они находятся в состоянии ниже порога непрерывного самовозбуждения. У интактного млекопитающего есть механизм, который поддерживает возбуждение центральной нервной системы выше этого уровня покоя. Таким механизмом является спонтанный разряд рецепторов.