Интернет-журнал 'Домашняя лаборатория', 2007 №5 - Федорочев
Шрифт:
Интервал:
Закладка:
Возьмите не очень широкую стеклянную трубку длиной в несколько десятков сантиметров и подберите к ней две пробки, С внутренней стороны, обращенной к трубке, вставьте в обе пробки по небольшому стеклянному стерженьку и намотайте на них по кусочку ваты. Один кусочек смочите несколькими каплями концентрированной соляной кислоты, другой — концентрированным раствором аммиака. Одновременно вставьте пробки с ватками в трубку с обеих концов. Через несколько минут — в зависимости от длины трубки — в ней, ближе к ватке с соляной кислотой, появится белое кольцо хлорида аммония NH4Cl.
Обычно при химических реакциях смесь перемешивают, чтобы процесс шел быстрее. Мы умышленно этого не сделали и не пытались даже помочь молекулам встретиться — они двигались сами. Такое самостоятельное передвижение молекул в той пли иной среде называют диффузией. Испаряясь с ваты, молекулы обоих веществ испытывали миллиарды столкновений в секунду с молекулами воздуха и друг с другом. И хотя скорость молекул очень велика, она исчисляется сотнями метров в секунду, при 0 °C и нормальном давлении свободный пробег, т. е. расстояние, которое успевает пройти молекула от одного столкновения до другого, составляет для этих веществ всего около 0,0001 мм. Поэтому-то аммиак и хлористый водород (из соляной кислоты) так медленно двигались в трубке. Столь же медленно распространяется по комнате с неподвижным воздухом пахучее вещество.
Но отчего белое кольцо появилось не посередине трубки? Оттого, что молекулы аммиака меньше, они продвигаются через воздух быстрее. Если же из трубки откачать воздух, то молекулы аммиака и хлористого водорода встретятся через доли секунды — длина свободного пробега молекул значительно увеличится.
Советуем вам самостоятельно провести небольшое исследование, чтобы узнать, как влияют на диффузию силы тяжести и температура. Для этого располагайте трубку вертикально и наклонно, а также нагревайте отдельные ее части (включая то место, где оседает хлорид аммония). Выводы попробуйте сделать сами.
От газов перейдем к жидкостям. В них диффузия идет еще медленнее. Проверим это на опыте.
На гладкую и чистую стеклянную пластинку капните рядом по нескольку капель трех жидкостей: в середине — воды, по бокам от нее — растворов соды и соляной кислоты. Жидкости до начала опыта не должны соприкасаться. Затем очень осторожно, избегая перемешивания, палочкой соедините растворы. Должен выделяться диоксид углерода, но это произойдет не сразу. А когда газ начнет выделяться, то пузырьки его расположатся вдоль границы, разделяющей области диффузии кислоты и соды.
Вместо соды и кислоты можно взять два любых растворимых в воде вещества, которые при смешивании окрашиваются или дают осадок. Впрочем, в таких опытах трудно избежать потоков жидкости, искажающих картину, поэтому лучше ставить опыты в загущенных растворах. А загущать их можно желатиной.
Приготовьте 4 %-ный раствор желатины, опустив ее в горячую воду (не кипятить!). Горячий раствор налейте в пробирку и, когда он остынет, в центр пробирки быстро, одним движением, введите пинцетом кристаллик перманганата калия, медного купороса или другого ярко окрашенного и растворимого в воде вещества. Пинцет сразу же выньте осторожным, но быстрым движением. В течение нескольких часов можно наблюдать очень красивую картину диффузии. Растворяемое вещество распространяется во всех направлениях с одинаковой скоростью, образуя окрашенную сферу.
С загущенным раствором можно поставить еще один опыт. Налейте горячий желатиновый раствор в две пробирки и добавьте в одну немного раствора щелочи, а в другую — фенолфталеина. Когда содержимое пробирок застынет, пинцетом быстро введите в центр первой пробирки кусочек таблетки фенолфталеина, в центр второй — комок кальцинированной соды. В обоих случаях появится малиновая окраска. Но заметьте: во второй пробирке окраска распространяется гораздо быстрее. Ионы гидроксида, образовавшиеся при диссоциации щелочи, намного меньше и легче сложной органической молекулы фенолфталеина, и поэтому они движутся в растворе быстрее.
Перейдем теперь к твердым веществам. В реакциях между ними (или между твердым веществом с жидкостью либо газом) молекулы могут сталкиваться только на поверхности. Чем больше поверхность раздела, тем быстрее идет реакция. Убедимся в этом. Железо на воздухе не горит. Однако это справедливо только для железных предметов. Например, у гвоздей поверхность соприкосновения с воздухом невелика, реакция окисления идет слишком медленно. Железные опилки реагируют с кислородом намного быстрее: на холоду раньше превращаются в ржавчину, а в пламени могут и загореться. Мельчайшие же крупинки способны вспыхнуть вообще без нагревания. Такое железо называют пирофорным. Его невозможно настругать даже самым мелким напильником, так что получают его химическим путем, например, разлагая соль щавелевой кислоты — оксалат железа.
Смешайте водные растворы какой-либо соли двухвалентного железа, например железного купороса, и щавелевой кислоты или ее растворимой соли. Желтый осадок оксалата железа отфильтруйте и заполните им пробирку не более чем на пятую часть объема. Нагрейте вещество в пламени горелки, при этом держите пробирку горизонтально или чуть наклонно, отверстием вниз и в сторону от себя. Выделяющиеся капли воды снимайте жгутом фильтровальной бумаги или ватой. Когда оксалат разложится и превратится в черный порошок, закройте пробирку и охладите ее.
Понемногу и очень осторожно высыпайте содержимое пробирки на металлический или асбестовый лист: порошок будет вспыхивать яркими искрами.
Особенно эффектен опыт в затемненном помещении.
Важное предупреждение: пирофорное железо нельзя хранить, это может привести к пожару! По окончании опыта порошок обязательно прокалите на воздухе или обработайте кислотой, чтобы не осталось несгоревших частиц — они могут самовоспламениться.
Далее исследуем, как влияет размер поверхности твердого вещества на скорость его реакции с жидкостью. Возьмите два одинаковых кусочка мела и один из них разотрите в порошок. Поместите оба образца в пробирки и залейте одинаковыми объемами соляной кислоты. Мелкораздробленный мел, как и следовало ожидать, растворится гораздо быстрее. Еще один кусочек мела поместите в пробирку с серной кислотой. Начавшаяся было энергичная реакция вскоре затихает, а затем и вовсе прекращается. Отчего же? Ведь серная кислота не слабее соляной…
При реакции мела с соляной кислотой образуется хлорид кальция СаСl2 который легко растворяется в воде и не мешает притоку к поверхности мела новых порций кислоты. При взаимодействии с серной кислотой получается сульфат кальция CaSO4, а он очень плохо растворяется в воде, остается на поверхности мела и закрывает ее. Чтобы реакция пошла дальше, надо время от времени очищать поверхность мела или заранее превратить его в порошок. Знание таких подробностей процесса очень важно для химической технологии.
И еще один опыт. Смешайте в ступке два твердых вещества, дающих окрашенные продукты реакции: нитрат свинца и иодид калия, железный