Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Физика » До предела чисел. Эйлер. Математический анализ. - Joaquin Sandalinas

До предела чисел. Эйлер. Математический анализ. - Joaquin Sandalinas

Читать онлайн До предела чисел. Эйлер. Математический анализ. - Joaquin Sandalinas

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 13 14 15 16 17 18 19 20 21 22
Перейти на страницу:

и затраты становятся минимальными. Эйлер был первым ученым, исследовавшим область эвольвентного зацепления, а его идеи привели к созданию уравнений Эйлера — Са- вари, которые используются в этой области и сегодня.

РИС.3

Рисунок зубьев пилы, созданный в соответствии с исследовании- ми Эйлера.

Зубья пилы

Помимо шестеренок, Эйлер также интересовался зубьями пилы (рисунок 3) и в 1756 году написал по этому вопросу статью на 25 страницах. В ней содержатся формулы, в которых учитывается количество зубьев, угол их наклона, степень входа зуба в дерево и так далее. Некоторые его выводы сегодня повергают в изумление: Эйлер рекомендовал использовать пилы длиной 1,2 метра и пилить целыми группами пильщиков.

Третьим и самым важным событием, оказавшим влияние на Эйлера в этот период, стала смерть его жены Катерины в 1773 году, после почти 40 лет брака. Ученый женился повторно — на своей свояченице Абигайл. Несмотря на все жизненные удары, он продолжал публиковать новые работы в прежнем ритме. Хотя в прошлом он уже внес значимый вклад в теорию чисел своими работами о математических константах или о числах Ферма, историки единогласно утверждают, что большая часть открытий была сделана Эйлером именно в последние годы жизни. Нельзя не подчеркнуть также, что только этих его достижений в данной области — не очень популярной в то время — хватило бы, чтобы оставить в веках имя любого математика.

ЭЙЛЕР И ДИОФАНТОВЫ УРАВНЕНИЯ

Эйлер уже в 1735 году внес большой вклад в изучение диофан- товых уравнений, являющихся центральной частью теории чисел. Диофантово уравнение — это уравнение с целыми коэффициентами, для которого возможны только целые решения. Такое название происходит от имени древнегреческого математика Диофанта Александрийского, который первым занялся их изучением.

Эйлер также попал под их очарование; большая часть его работ по теории чисел состоит в решении задач, оставшихся в наследство от Ферма, а того необычайно привлекал Диофант и область его научных занятий. Но время сбора урожая еще не пришло: Эйлеру не хватало многих мощных инструментов, чтобы начать систематическое изучение диофантовых уравнений, таких как алгебраическая геометрия и эллиптические интегралы, которые только начали появляться. И хотя Эйлер измерил границы царства Диофанта, он не смог его завоевать. Самым знаменитым доказательством в этой области, наверное, может считаться частичное доказательство теоремы Ферма, которое получил Эйлер. Согласно ей, невозможно было решить диофантово уравнение хn + уn - zn при n ≥ 3. Эйлер доказал, что это так при n = 3. Считается, что в доказательстве, которое он нашел уже в 1735 году, была ошибка, но впоследствии Эйлер сам ее исправил. Также при изучении другой категории чисел он подтвердил рассуждения для п - 4, уже выведенные Ферма. Универсальное решение для любого значения п появилось только в конце XX века благодаря Эндрю Уайлсу.

Эйлер также заинтересовался уравнением Пелля — дио- фантовым уравнением вида

у2 = Ах2 + 1,

где А — определенное число, а не неизвестная. Это уравнение решил Лагранж, который развил и расширил метод непрерывных дробей, проанализированный Эйлером. Современное название уравнения происходит от ошибки самого Эйлера, который перепутал Джона Пелля (1611-1685) с математиком

ДИОФАНТОВЫ УРАВНЕНИЯ

Диофант Александрийский (ок. 200 — ок. 284) известен как создатель диофантовых уравнений. Сегодня так называют уравнения с одной или более неизвестными, в которых все коэффициенты являются целыми числами и в качестве решений допускаются целые числа, хотя Диофант допускал и рациональные. Предполагается, что Диофант прожил 84 года, поскольку имеется эпитафия, в которой упоминается его возраст.

Прах Диофанта гробница покоит; дивись ей, и камень

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребенком

И половину шестой встретил с пушком на щеках.

Только минула седьмая, с подругой он обручился.

С нею, пять лет проведя, сына дождался мудрец;

Только полжизни отцовской возлюбленный сын его прожил.

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе,

Тут и увидел предел жизни печальной своей*.

* Перевод С. Н. Боброва.

Если мы размотаем этот клубок ребусов и запишем диофантово уравнение, скрывающееся в этом тексте, то получим

x/6 + x/12 + x/7 + 5 + x/2 + 4 = x, и решение ч = 84

Диофант и Ферма

Еще одной причиной известности Диофанта стала история создания теоремы Ферма. Вкратце она выглядит так: во времена Ферма были опубликованы почти все труды Диофанта из тех немногих, что дошли до наших дней. Читая книги, Ферма обычно писал свои комментарии на полях. Одно из предложений Диофанта, приведенных в тексте, натолкнуло Ферма на размышления и вдохновило его на создание теоремы, позже названной Великой теоремой Ферма. Она абсолютно безобидна с виду и кажется довольно простой. Ферма утверждал, что нашел для нее превосходное доказательство, которое не смог записать, поскольку на полях книги не хватило места; по крайней мере, такую версию распространил сын ученого. Тем не менее найти доказательство никому не удавалось до конца XX века (это сделал Эндрю Уайлс в 1995 году). Диофант написал 11 книг по арифметике, из которых до наших дней дошло только шесть (есть еще четыре, авторство которых не установлено). В них содержится более 100 задач, приводящих к диофантовым уравнениям, но в их решениях нет и следа математического метода, а только лишь проявление необыкновенного гения ученого.

Уильямом Браункером (1620-1684), признанным отцом этого знаменитого уравнения. Джулия Робинсон (1919-1985) с его помощью смогла решить десятую проблему Гильберта, одну из самых сложных в современной математике. Она состояла в том, чтобы проверить, существует ли алгоритм, способный определить, имеет ли произвольное диофантово уравнение целое решение. Окончательный ответ — нет.

ПРОБЛЕМА ЭЙЛЕРА И ДИОФАНТОВЫ УРАВНЕНИЯ

Знаменитая проблема Эйлера, сформулированная в 1769 году, связана с диофантовым уравнением вида

х4 + у4 + z4 = u4.

ГИПОТЕЗА О СУММЕ СТЕПЕНЕЙ

Французский математик Огюстен Луи Коши (1789-1857) вошел в историю благодаря своему таланту, сделанным открытиям, сформулированным теоремам и понятиям, а также противоречивому характеру. Его чрезмерная набожность и нежелание признавать заслуги коллег составляли темную сторону сложной натуры ученого. Однако с ним связан один анекдот, который показывает его более приятное лицо и его неподражаемое французское чувство юмора. Согласно этой истории, а точнее легенде, однажды Коши, который получал множество рукописей на проверку, в одной из них нашел доказательство, в стиле Ферма, несуществования целых чисел х, у, z, которые удовлетворяли бы диофантову уравнению:

x3 + y3 + z3 = u3.

В тот день Коши пребывал в хорошем расположении духа и, даже не прочитав всего доказательства, написал ответ, занимавший одну строку. Его кратким вердиктом было:

З3 + 43 + 53 = 63.

Действительно, 27 + 64 + 125 = 216, в чем может убедиться любой ученик средней школы.

Упрощая, мы можем сказать, что она постулирует невозможность существования целых х, у, г и и, при которых равенство было бы верным. Долгое время это предположение считалось справедливым, пока американский математик Ноам Элкис (1966) не опроверг его, опубликовав в 1988 году такой пример:

26824404 + 153656394 +187967604 - 206156734.

И это не все: Элкис доказал, что у этого уравнения — бесконечное число решений абсолютно разной величины, но самое маленькое состоит примерно из 70 цифр. Это показывает нам, что ни одно предположение нельзя принимать на веру, каким бы очевидным оно ни казалось и какой бы ни совершался прогресс в его доказательстве. Сегодня существует даже отдельный русский веб-сайт, на котором собраны контрпримеры к ошибочной гипотезе Эйлера.

РАЗБИЕНИЕ

В течение всей своей жизни Эйлер посвятил много сил работе над разбиением. Хотя базовое понятие разбиения не представляет собой ничего сложного, чтобы изучить его подробно, требуется сложная математика. Детальное объяснение займет больше страниц, чем вся эта книга, поэтому мы рассмотрим понятие очень поверхностно. Возьмем произвольное положительное число, достаточно маленькое, чтобы с ним было удобно работать, например 7. Сколькими способами его можно разложить на слагаемые? Разумеется, разложения, отличающиеся только по порядку слагаемых, такие как 7 = 5+1+1 и 7 = 1+5+1, являются эквивалентными и засчитываются только один раз. Для числа 7 мы имеем:

1 ... 13 14 15 16 17 18 19 20 21 22
Перейти на страницу:
Тут вы можете бесплатно читать книгу До предела чисел. Эйлер. Математический анализ. - Joaquin Sandalinas.
Комментарии