Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Математика » Пятьсот двадцать головоломок - Генри Дьюдени

Пятьсот двадцать головоломок - Генри Дьюдени

Читать онлайн Пятьсот двадцать головоломок - Генри Дьюдени

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 20 21 22 23 24 25 26 27 28 ... 62
Перейти на страницу:

378. Так ли просто? Перед вами простой магический квадрат, у которого суммы чисел, стоящих в любой строке, в любом столбце и на главных диагоналях, равны 72. Головоломка состоит в том, чтобы превратить его в мультипликативный магический квадрат, у которого произведения чисел, стоящих в любой строке, в любом столбце или на любой из больших диагоналей, совпадали бы между собой. Не разрешается ни менять числа местами, ни прибавлять к ним что-либо, ни вообще пользоваться какими-либо арифметическими знаками! Можно лишь передвигать цифры внутри одной клетки. Так, вместо 27 разрешается брать 72.

Если вам удастся подобрать «ключ» к решению, то задача окажется необычайно простой. В противном случае решить головоломку почти невозможно.

379. Фокус с магическим квадратом. Этот фокус был весьма разрекламирован в США много лет назад.

Заполните пустые квадраты (см. рисунок) цифрами (в каждом случае различными, чтобы никакие две клетки не содержали одинаковой цифры) так, чтобы сумма чисел, стоящих как можно в большем числе столбцов, строк и на диагоналях, равнялась 15. За разгадку «секрета» фокуса был назначен большой приз, но получить правильное решение не удалось никому.

Может быть, читатель разгадает, в чем здесь дело?

380. Магический квадрат из четырех цифр. Поскольку данный квадрат составлен из одного и того же числа 1234, естественно, что суммы чисел, стоящих во всех строках, столбцах и на диагоналях, равны между собой. Суть головоломки в том, чтобы составить и разместить 9 различных четырехзначных чисел (составленных из тех же самых четырех цифр) так, чтобы они тоже образовывали правильный магический квадрат. Помните, что все вместе числа должны содержать по девять экземпляров каждой из цифр 1, 2, 3, 4 и что это должны быть настоящие четырехзначные числа без каких-либо дробей; никакие трюки здесь не допускаются.

381. Прогрессирующие квадраты. Перед вами магический квадрат, постоянная которого, то есть сумма чисел в каждой строке, в каждом столбце и на каждой из двух диагоналей, равна 287. Если мы удалим числа, расположенные по краям, то останется другой магический квадрат, постоянная которого равна 205. Если мы опять удалим крайние числа, то получится квадрат с постоянной 123. Заполните теперь пустые клетки числами от 1 до 83 включительно так, чтобы получился магический квадрат с постоянной 369 на любой из 20 его прямых.

382. Условный магический квадрат. Хотя относительно простого построения магических квадратов добавить нечего, а по самому предмету существует весьма обширная, правда, разрозненная, литература, небольшие вариации с некоторыми новыми условиями всегда вызывают интерес. Вот один нетрудный пример.

Можно ли построить магический квадрат, у которого суммы чисел, стоящих в любой строке, в любом столбце и на каждой из двух больших диагоналей, были бы одинаковы, из чисел от 1 до 25 включительно, если размещать в заштрихованных клетках только нечетные числа, а в остальных четные? Существует достаточно много решений этой задачи. Не смогли бы вы найти хотя бы одно из них?

383. Пятиконечная звезда. Головоломки со звездами обладают своеобразной притягательной силой. Я приведу пример такой головоломки с простой пятиконечной звездой.

В каждый кружок изображенной здесь пятиконечной звезды требуется поместить различные числа таким образом, чтобы сумма любых четырех чисел, стоящих на одной прямой, равнялась 24. Решения с десятью последовательными числами не существует, однако вы можете использовать любые целые числа, какие пожелаете.

384. Шестиконечная звезда. В предыдущей задаче мы рассмотрели случай с пятиконечной звездой. Оказывается, с шестиконечной звездой дело обстоит еще интересней. В этом случае (см. рисунок) мы всегда можем использовать 12 последовательных чисел, от 1 до 12, а сумма четырех чисел на каждой прямой всегда окажется равной 26. Сумма чисел, стоящих в шести вершинах, может равняться любому числу от 24 до 54 включительно, кроме 28 и 50. В нашем примере эта сумма равна 24. Если вместо каждого из чисел вы подставите разность между ним и 13, то получите другое решение, дополнительное к данному, с суммой вершин, равной 54 (78 минус 24). Две дополнительные суммы в совокупности всегда дают 78.

Я приведу общее число различных решений и укажу на некоторые любопытные законы, которым подчиняется эта задача, но ее решение предоставлю читателю. Существует 6 и только 6 размещений, при которых сумма чисел на каждой прямой и во всех вершинах равна 26. Можете ли вы найти одно из них или даже все?

385. Семиконечная звезда. Мы уже познакомились вкратце с пяти- и шестиконечными звездами. Случай с семиконечной звездой особенно интересен. Все, что от вас требуется, это разместить в кружочках числа от 1 до 14 так, чтобы в любых четырех кружочках, лежащих на одной прямой, они в сумме давали 30.

Если вы нарисуете диаграмму, подобную изображенной на нашем рисунке, и воспользуетесь перенумерованными фишками, то вам будет трудно не подпасть под очарование этой головоломки. Возможно, однако, что никто из читателей не натолкнется на простой способ ее решения и решение будет найдено лишь благодаря терпению и удаче. И все же, как и в подавляющем большинстве головоломок, уже встречавшихся на наших страницах, вы увидите, что и в данном случае решение подчиняется некоторому закону (если сумеете найти этот закон).

386. Две восьмиконечные звезды. Головоломки с пяти-, шести- и семиконечными звездами приводят нас к восьмиконечной звезде. Эту звезду можно образовать двумя различными способами (см. рисунок); здесь приводится и решение для первого варианта. Числа от 1 до 16 расположены таким образом, что сумма четырех из них вдоль каждой прямой равна 34. Если вместо каждого числа вы подставите разность между ним и 17, то получите дополнительное решение.

Если читатель попытается найти какое-нибудь решение для другой звезды, то, даже зная решение, приведенное выше, он убедится, что этот орешек расколоть не так-то просто. Однако я представлю вам головоломку в легкой и занимательной форме. Оказывается, что любое решение для первой звезды можно автоматически преобразовать в решение для второй, если правильно взяться за дело. Каждая прямая из четырех чисел в одном случае появится и в другом, изменится лишь порядок чисел. Располагая этими сведениями, вам нетрудно будет найти решение и для второй звезды.

387. Гарнизоны фортов. Перед вами на рисунке изображена система фортификационных сооружений. Всего имеется 10 связанных между собой фортов, цифры обозначают численность размещенных в них небольших гарнизонов. Командующий решил передислоцировать гарнизоны таким образом, чтобы вдоль каждой из пяти прямых размещалось по 100 человек.

Не могли бы вы указать, как это следует сделать?

Гарнизоны должны передислоцироваться целиком, не будучи разбитыми на части. Эта головоломка с фишками весьма занимательна и не очень трудна.

388. Карточный пятиугольник. Набросайте на большом листе бумаги пятиугольник. Затем положите все карты одной масти, исключив валета, даму и короля, так, чтобы суммы очков трех карт, лежащих на любой стороне пятиугольника, равнялись между собой[19]. Можно заметить, что приведенное на рисунке размещение карт не удовлетворяет нашему условию. Однако после того, как вы найдете соответствующее правило, карты можно будет раскладывать, не задумываясь. Решений здесь существует очень мало.

389. Головоломка с семиугольником. Разместите в кружках числа от 1 до 14 (см. рисунок) так, чтобы три числа на каждой из сторон в сумме давали 19.

390. Розы, трилистники и чертополох. Разместите числа от 1 до 12 (по одному числу в каждой картинке) таким образом, чтобы совпали семь их сумм: вдоль каждого из двух центральных столбцов, вдоль каждой из двух центральных строк, по всем четырем розам, по всем четырем трилистникам, по всему чертополоху.

391. Магический шестиугольник. На помещенном здесь рисунке показано, как можно разместить числа от 1 до 19, чтобы суммы трех чисел вдоль каждой из 12 прямых равнялись 23. Шесть прямых совпадают, конечно, с шестью сторонами шестиугольника, а шесть остальных проходят через центр.

Можно ли иначе расставить числа, чтобы сумма по любому из 12 направлений по-прежнему составляла 23? Существует только одно такое размещение чисел.

392. Головоломка с колесом. Разместите числа от 1 до 19 в 19 кружках (см. рисунок) так, чтобы сумма любых трех чисел на одной прямой равнялась 30. Сделать это нетрудно.

393. У ручья. Существует общее мнение, что головоломки, в которых требуется отмерить некоторое количество жидкости, можно решить только путем ряда проб, однако в подобного рода случаях можно найти общие формулы для решений. Воспользовавшись как-то преимуществами неожиданного досуга, я рассмотрел этот вопрос более внимательно. В результате обнаружились весьма интересные вещи. Рассмотрим, например, простейший случай, когда некий человек приходит к ручью только с двумя сосудами и хочет отмерить нужное количество воды. Если мы имеем дело, скажем, с бочкой вина, то у нас могут возникнуть разного рода сложности, связанные с тем, пуста ли бочка или полна, известны ли нам ее вместимость и содержимое или нет, допускается ли потеря вина или нет и можно ли переливать вино обратно в бочку. В случае у ручья все эти сложности исчезают. Может быть, задача упростилась настолько, что говорить о ней как о головоломке вообще не имеет смысла? Давайте посмотрим.

1 ... 20 21 22 23 24 25 26 27 28 ... 62
Перейти на страницу:
Тут вы можете бесплатно читать книгу Пятьсот двадцать головоломок - Генри Дьюдени.
Комментарии