Категории
Самые читаемые

Зеркальный мир - Вернер Гильде

Читать онлайн Зеркальный мир - Вернер Гильде

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 25 26 27 28 29 30 31 32 33 ... 41
Перейти на страницу:

ЗДЕСЬ ГЁТЕ ОШИБАЕТСЯ

Иоганн Вольфганг Гёте в своем известном автобиографическом произведении «Поэзия и правда» признался, что некую молодую даму он любил больше всех других. Казалось бы, подобное утверждение сугубо личного свойства едва ли может встретить возражения. Мне не известно, какой мерой исследователь творчества Гёте профессор Генрих Дюнтцер сумел измерить величину былой любви Гёте, но в своем комментарии он написал: «Тут Гёте заблуждается!» Этим крылатым выражением он снискал свою толику литературной славы. Конечно, Гёте в своей жизни нередко ошибался. Великий человек, обуреваемый множеством идей, вообще чаще делает ошибки, чем тот, кто почти или вовсе не способен размышлять, и уж заведомо гораздо чаще того, кто спустя годы критикует или комментирует результаты его трудов.

В сфере науки особенно легко посмеиваться над мнениями исследователей, живших в прошлом. Они ведь еще не знали того, что мы знаем сегодня. Но зато нам доподлинно известно, что потомки не преминут покачать головой по поводу наших собственных заблуждений и нашего неразумия.

Во времена Гёте многие физики изучали природу света. Тайного советника из Веймара тоже занимала эта проблема, он даже вступил по этому поводу в ожесточенный спор со своими современниками. Мы теперь знаем, что они спорили зря. Ведь предметом занятий Гёте был свет, каким он его видел. Поэт написал в 1805 г.:

Не будь подобен Солнцу глаз,

Не смог бы Солнце он увидеть...

(Эта тема подробно разработана в известной научно-популярно и книге акад. С. И. Вавилова «Глаз и Солнце». (М.: Наука, 1960). - Прим. перев)

Это верно. Но Солнце светит независимо от того, смотрим мы на него или нет. Цель естествоиспытателей как раз и заключается в поисках законов природы, действующих объективно и независимо от нас. Сегодня мы можем найти у Гёте объяснение тому, что ртутная лампа высокого давления в уличном светильнике испускает зеленоватый свет, а отбрасываемая ею тень окрашена в красные тона. Хотя поэт, естественно, еще не знал такой лампы, но зато прекрасно разбирался в цветных тенях. Точно так же Гёте, несомненно, сумел бы объяснить нам, почему на телеэкран набегает черная тень, когда с него исчезает лицо диктора. Однако подобные явления больше говорят о строении наших органов чувств, нежели о природе света. Если бы Гёте довелось узнать, что эта проблема вообще лежит за пределам:и возможностей чувственного представления человека, он безусловно воспринял бы такое сообщение с глубоким неудовольствием.

Мы говорим: свет - это электромагнитные волны. Мы рассуждаем о длинах волн света, их скорости и частоте мсолебанкй. Но тут неминуемо встает вопрос: а что же колеблется?

Когда речь идет о водяных волнах, нам видно, что мсолеблется (хотя наше зрительное восприятие волнообразного движения и является ложным). В случае звука колеблется воздух. Но в случае электромагнитных волн колеблется «поле». Вплоть до 1900 г. физики снова и снова пытались доказать существование колеблющейся среды в форме невидимого газа - эфира, в котором якобы и распространяется свет. Но все опыты оказывались неудачными или приводили к обратному выводу, доказывая, что эфира не существует. Ныне мы утешаемся сравнением: если температура в комнате регулярно опускается и вновь поднимается, то мы можем рассматривать этот процесс как колебание.

'Так Малюс доказал поляризацию света. Если правое зеркало отражает лишь колебания определенных направлений, а остальные гасит, то левое зеркало в соответствующем положении вообще не должно ничего больше отражать

Частоты (то есть число колебаний в секунду) электромагнит ных волн охватывают, как нам сегодня известно, диапазон от 1 Гц до более 1 секстиллиона Гц. Их шкала имеет столь огромную протяженность, что может быть изображена только в логарифмической форме; каждому отрезку логарифмической шкалы соответствуют десятикратные значения по отношению к значениям предыдущего отрезка.

Дециметровые волны, возбуждаемые в радарных установках с целью локации самолетов, судов или дождевых облаков, колеблются с частотой около 3 млрд. Гц. Скорость распространения электромагнитных волн в вакууме составляет 300 000 км/с, т. е 300 млн. м/с, или 3 млрд. дм/с. Чтобы достичь такой частоты все население Земли (примерно 4 млрд.) должно было бы пробежать мимо нас за одну секунду, то есть за время, необходимое для произнесения слов «двадцать один». Если повысить частоту в 100 тыс. раз, то будет достигнута граница области колебаний, технически осуществимых в настоящее время. Умножив это значение еще на 100 млн., мы окажемся в интервале частот радиоактивного гамма-излучения. Его частота - порядка трех секстиллионов герц, это число с 21 нулем (3 • 1021). Хотя это непостижимая для нас величина, значения такого порядка нам все же отчасти знакомы. Вспомните: кубический кристалл с ребром в 1 см содержит примерно 3 • 1024 атомов.

Световой луч падает на брусок из стекла. В нем присутствуют колебания любых направлений. Однако отражается лишь часть света, имеющая вполне определенное направление колебаний. Отраженный луч поляризуется

Свидетельством могущества человеческого разума служит тот факт, что почти весь этот диапазон частот находит техническое применение. Однако мы здесь ограничимся в основном областью видимого света с частотой колебаний в несколько квадриллионов герц. Говоря об угловых зеркалах, мы подразумеваем, что законы оптики действительны и для радара (до 100 млрд. Гц). Затем был описан опыт Макса фон Лауэ, который определил строение решетки каменной соли с помощью рентгеновских лучей (1000 квадриллионов Гц).

Современники Гёте, разумеется, ничего не ведали ни об электромагнитных полях, ни о частотах колебаний световых волн. Однако они знали важнейшие законы геометрической оптики (отражение, преломление), и им было известно, что свет можно описать как волну.

Двупреломляющие кристаллы поляризуют свет

В 1807 г. французский физик и инженер Этьен Луи Малюс произвел свой известный опыт с двумя отражающими стеклянными пластинками. В опыте Малюса световой луч падает на зеркало под углом 56°. При этом луч, естественно, отражается в соответствии с законом: угол падения равен углу отражения. Отраженный луч Малюс направил на другое зеркало и тоже под углом 56°. Пока второе зеркало было ориентировано параллельно первому, луч отражался от него вполне нормально. Но как только Малюс повернул второе зеркало относительно первого на 90°, второе зеркало перестало отражать. Оно осталось темным. Как же объяснить это внезапное «исчезновение света»? Мы будем исходить из того, что первоначально, до падения на первое зеркало, световые колебания были направлены во все стороны, причем вспомним, что колебания испытывает не материя, а поле. Однако не станем ломать себе голову над тем, как происходят световые колебания; предоставим это специалистам.

Тут мы знакомимся с новым и поразительным свойством зеркала. Оно сортирует разнонаправленные световые колебания и отражает только ту часть падающего света, которая колеблется в направлении, определенным образом ориентированном по отношению к поверхности зеркала. Колебания всех других направлений обратно не посылаются. Это явление называется поляризацией. Зеркало поляризует свет. Следовательно, первое зеркало отбрасывает на второе поляризованный свет. Если второе зеркало установлено так, что его поверхность «правильно» ориентирована по отношению к направлению поляризации, то оно без всяких осложнений отражает световой луч. Но если его поверхность установлена «неправильно», то зеркало лишается способности отражать. Впрочем, свет поляризуется зеркалом не полностью. Он еще сохраняет остатки колебаний, ориентированных под небольшими углами к основному направлению. Поэтому второе зеркало при малых отклонениях от параллельного положения еще не темнеет. Свет в зеркале слабеет лишь по мере вращения зеркала, пока наконец не погаснет окончательно при повороте его на 90°.

Некоторые силикаты (минералы кремния) построены из цепочек [8Ю2]-тетраэдров, у которых возможно зеркальное отражение. Вот почему кристаллы кварца появляются в виде правой и левой форм

Англичанин У. Николь (1768-1851) в 1829 г. (то есть еще при жизни Гёте) открыл другую возможность получать поляризованный свет. Он пропустил световой луч через кристалл известкового шпата (Оптический кальцит, или известковый шпат, - достаточно крупные водя-нопрозрачные кристаллы углекислого кальция - в минералогии принято называть исландским шпатом. - Прим. перев). К его немалому удивлению, кристалл расщепил этот луч на два разнонаправленных световых луча. Николь установил, что луч, пересекающий кристалл по прямолинейной траектории, является поляризованным. Доказал он это точно так же, как Малюс в опыте с зеркалами. Позади первого кристалла он поместил другой такой же. Если второй кристалл был расположен «правильно», то он пропускал поляризованный свет. Если же (после поворота) он оказывался в «неправильном» положении, то свет в нем гас.

1 ... 25 26 27 28 29 30 31 32 33 ... 41
Перейти на страницу:
Тут вы можете бесплатно читать книгу Зеркальный мир - Вернер Гильде.
Комментарии