Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Научпоп » Самая сложная задача в мире. Ферма. Великая теорема Ферма - Luis Alvarez

Самая сложная задача в мире. Ферма. Великая теорема Ферма - Luis Alvarez

Читать онлайн Самая сложная задача в мире. Ферма. Великая теорема Ферма - Luis Alvarez

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 29
Перейти на страницу:

Несложно представить себе, как математик получил этот результат. Он некоторое время анализировал пифагоровы тройки и их свойства. Речь идет о записи квадрата в виде суммы двух квадратов так, чтобы все используемые числа были натуральными. Разумно предположить: поставив перед собой эту проблему, Ферма также задался вопросом, что произойдет, если вместо квадратов использовать кубы, четвертые степени и так далее. В конце концов, одной из самых естественных тенденций для математика является поиск обобщенного результата или, по крайней мере, исследование возможных обобщений.

Понять поставленную задачу довольно просто, и хотя уже половина ее решения заключается в этом понимании, вторая половина, в случае теоремы Ферма, сформулированной в 1637 году, чрезвычайно сложна. Почему? Чтобы попытаться ответить на данный вопрос, нужно совершить "небольшое" путешествие в прошлое, примерно за 2100 лет до Ферма, во времена Пифагора, — не только из-за связей, которые имеются у Великой теоремы с пифагоровыми тройками.

ГРЕКИ

Вернемся к началу времени математики для понимания природы математического доказательства. Пифагор Самосский (ок. 580 — ок. 495 до н.э.) — полулегендарный персонаж. Почти все документы, касающиеся этого ученого, которые дошли до нас, были созданы через несколько веков после его смерти, и поскольку последователи разве что не обожествляли Пифагора, значительная часть сведений о нем — это коллекция мифов. Так же как легенда по имени Гомер положила начало западной литературе, легенда по имени Пифагор основала математику.

Одно известно точно: Пифагор не формулировал теорему, которая носит его имя. Египтяне и вавилоняне знали и применяли ее, но они пользовались ею как инструкцией. Они неоднократно проверили ее на практике и убедились в ее истинности. Говоря современным языком, египтяне и вавилоняне использовали математику эмпирически: если они систематически убеждались, что результат верен, они обобщали его и думали, что он верен всегда. Это известно как индуктивное рассуждение. Когда мы находим действующую инструкцию, мы применяем ее, даже если и не понимаем, почему она работает.

Однако то, что сделал Пифагор, было действительно революционно: он пришел к убеждению, что эмпирических инструкций недостаточно и что требуется строгое доказательство их правоты. Фалес Милетский (ок. 630-545 до н. э.), отец философии, уже занимался выведениями доказательств, но Пифагор превратил поиск математического доказательства в систематическую программу. Он сделал нечто удивительное: пришел к выводу, что инструкция может быть доказана для всех случаев дедуктивно, с помощью правил логики, чтобы стать вечной, безупречной истиной, которую невозможно оспорить. Эмпиризму он противопоставил разум. Так, доказательство, основанное на логических правилах и образованное рядом шагов, которые любой может рассмотреть и понять, лучше, чем миллион экспериментов.

Насколько известно, Пифагор был первым, кто подумал о том, что такие доказательства не только возможны, но и достижимы систематически.

ГЕОМЕТРИЧЕСКОЕ ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ ПИФАГОРА

Возьмем два квадрата одинаковой площади со стороной а + b и разделим их, как показано на рисунке. Очевидно, что площадь каждого из квадратов равна (а + b)2, но ее можно выразить и другим способом. В квадрате слева общая площадь равна сумме площадей двух квадратов со сторонами b и а и площадей четырех треугольников со сторонами а и b, то есть

1/2 · ab

для каждого из них. Следовательно, общая площадь первого квадрата равна

A1 = a2 + b2 + 4(1/2 · ab)

Площадь второго квадрата равна сумме площади вписанного квадрата со стороной с и площадей четырех треугольников со сторонами а и b:

A2 = c2 + 4(1/2 · ab).

Так как А1 и А2 равны, то

a2 + b2 + 4(1/2 · ab) = c2 + 4(1/2 · ab).

И, после сокращения уравнения:

а2+b2=с2.

Это типичный пример геометрического доказательства, поскольку для него необходимо построить различные геометрические фигуры внутри квадратов.

Поэтому он заслуживает титула отца математики. Все амбиции математической науки, одной из самых плодотворных в интеллектуальной истории человечества, выразил немецкий математик Давид Гильберт (1862-1943) в своем "Wir mussen wissen. Wir werden wissen" ("Мы должны знать. Мы будем знать!") во втором десятилетии XX века.

Пифагор или кто-то из его школы доказал теорему, носящую его имя, так что уже невозможно сомневаться в ее истинности. Данная теорема дает нам неизменное правило. В случае с прямоугольным треугольником это отношение всегда будет выполняться. Пифагор очень высоко поднял планку для последующих поколений: уже недостаточно было найти правило, проверить его на практике много раз и признать его истинным. Теперь в математике требовалось его доказывать. И хотя в некоторых случаях это чрезвычайно сложно, подход Пифагора оказался таким плодотворным, что математики, несмотря на все трудности, не готовы отказываться от него.

В течение нескольких веков греки следовали принципам Пифагора и стремились к строгому доказательству своих результатов. Но геометр, который жил при Птолемее I (367-283 до н. э.), военачальнике Александра Великого и царе Египта, пошел еще дальше. Речь идет о Евклиде (ок. 325-265 до н. э.), который не довольствовался тем, чтобы доказывать отдельные результаты, а амбициозно захотел собрать все математическое знание своего времени в одну систему.

Евклид понял, что любое доказательство основывается на предыдущих результатах, которые, в свою очередь, были доказаны ранее. Но данный процесс не может длиться до бесконечности — нужно исходить из некоторых истин, которые считаются очевидными. Их Евклид называл аксиомами. Также должны существовать четкие определения используемых элементов; в геометрии, например, это точки, линии, треугольники, круги и так далее. На этой основе Евклид создал единую систему, в которой доказанные и предполагаемые результаты (в последнем случае — аксиомы) служат основой для доказательства других результатов. В отличие от аксиом, эти новые результаты, требующие доказательства, получили название теорем.

Повторяя эту операцию снова и снова, мы можем построить математическую теорию, похожую на дерево, на котором с помощью небольшого количества корней можно породить потенциально бесконечное количество веток и листьев. Какие- то из них более важны (более крепкие и плодородные в своем потенциале создания новых ветвей), чем другие, но все они одинаково истинные.

Рассказывают, что Птолемей I потребовал у Евклида обучить его математике, при этом не желая тратить много сил и времени. Он хотел, чтобы ученый упростил свои объяснения, на что тот ответил:

"Ваше Величество, то, о чем Вы меня просите, невозможно; необходимо пережить и пройти через все необходимые шаги, чтобы понять науку. Не существует царской дороги в математику".

Невозможно преувеличить важность евклидовой геометрии. Практически все последующие поколения математиков использовали ее в качестве отправной точки. Сегодня любой математик, предлагающий новую теорию (или пытающийся переформулировать существующую), пользуется системой Евклида. До самого XX века его книга — знаменитые "Начала" — была самой популярной после Библии и считалась отправной точкой и необходимым объектом изучения в университетах.

Но несмотря на невероятные результаты, некоторые нюансы деятельности Пифагора и школы, которую он основал, сегодня могут показаться неприемлемыми. Пифагорейцы представляли собой что-то вроде тайной религии или секты и, возможно, не сильно отличались от других секретных древнегреческих обществ, например элевсинских или орфических мистерий. Так же как и посвященные элевсинцы, пифагорейцы не могли открывать природу своей деятельности.

Пифагорейский мистицизм был тесно связан с идеей того, что число — это сущность природы. Но под числом пифагорейцы понимали не совсем то же, что и мы. Для них числа были только натуральными и теми, что могут быть выражены в виде частного натуральных (3/4,5/8 и так далее): множество рациональных положительных чисел.

Конечно, пифагорейцы умели измерять геометрические длины. Верные своей мистической вере в числовую сущность природы, они были уверены, что любую длину можно выразить рациональным положительным числом. Они ожидали, что геометрия будет открывать природу, подобно любой естественной науке или музыкальной гармонии, также открытой ими.

И тут произошла катастрофа. Согласно легенде, один из учеников Пифагора доказал, что гипотенуза прямоугольного треугольника не является числом в том смысле, который назначали этому понятию пифагорейцы. Как ни удивительно, речь шла о самым простом прямоугольном треугольнике, у которого два катета имеют длину, равную единице, — о треугольнике не только прямоугольном, но и равнобедренном. Действительно, в данном случае гипотенуза, согласно собственно теореме Пифагора, равна √2.

1 2 3 4 5 6 7 8 9 10 ... 29
Перейти на страницу:
Тут вы можете бесплатно читать книгу Самая сложная задача в мире. Ферма. Великая теорема Ферма - Luis Alvarez.
Комментарии