Юный техник, 2005 № 04 - Журнал «Юный техник»
Шрифт:
Интервал:
Закладка:
Наличие метана, по идее, должно свидетельствовать о существовании органической жизни на Титане. Причем не только в далеком прошлом, но и сейчас. Дело в том, считают ученые, что метан непрерывно распадается под воздействием солнечного ультрафиолета. И раз он до сих пор существует, стало быть, его запасы постоянно возобновляются. На Земле это происходит за счет процессов жизнедеятельности обитателей нашей планеты, а также при распаде органических тканей.
Не стоит представлять себе неких разумных титанов или титанцев, которые понастроили города, развели фермы и поля… Или неких «титанозавров», которые нежатся в метановых болотах.
«Вряд ли на Титане существует органическая жизнь в привычных нам формах, — предупреждает Ральф Лоренц из Аризонского университета в Таксоне. — Источником же, восполняющим утраченный метан, может быть, в частности, такое явление, как криовулканизм. То есть местные вулканы в условиях местного климата вместо расплавленных пород выбрасывают на поверхность планеты лед, часть которого затем тает, превращаясь в жидкий метан»…
Посадка «Гюйгенса», по мнению экспертов, выглядела примерно так…
Но многие исследователи считают, что Титан со временем может стать еще одним оазисом жизни во Вселенной. Во-первых, говорят они, как известно, Сатурн, подобно Юпитеру, излучает больше энергии, чем получает от Солнца.
Во-вторых, в глубине метановых озер могут быть свои собственные источники тепла, подобно тем «черным курильщикам» — подводным вулканам, которые не столь давно были обнаружены на дне земных океанов. И, наконец, в-третьих, это сейчас Титан представляет собой холодный и мрачный мир. Но, как говорилось, через 6–7 млрд. лет он может претерпеть радикальные изменения.
Согласно одной из компьютерных моделей, сценарий развития событий может быть примерно таким. После того, как наше светило из желтого карлика в конце своей жизни превратится в красного гиганта, яркость его существенно возрастет. В итоге температура на окраине Солнечной системы начнет повышаться.
Тогда, как полагают астрономы из Лаборатории лунных и планетарных исследований Университета Аризоны (США), температура на поверхности Титана возрастет с нынешних минус 180 °C до минус 70 °C. Этого вполне достаточно, чтобы началось таяние замерзшего метана, возникли условия для зарождения органической жизни.
Скорее всего, они — формы этой жизни — будут совершенно не похожи на земные. «Тем не менее, природа может подарить Солнечной системе второй шанс для зарождения жизни, и грех будет им не воспользоваться, — полагают Ральф Лоренц и Джонатан Льюнайн из Лаборатории лунных и планетарных исследований Университета Аризоны. — Ведь с того момента, когда Солнце превратится в красного карлика, до того времени, когда оно начнет пульсировать и быстро терять свою массу, разбрасывая ее по Вселенной, пройдет порядка 500 млн. лет. Этого срока вполне достаточно, чтобы жизнь на Титане развилась до достаточно высокого уровня».
Чтобы проверить, насколько верны их предположения, ученые и собираются в скором будущем отправить на Титан еще один исследовательский аппарат. Тогда мы и узнаем очередные новости с Титана. А там, быть может, очередь когда-нибудь дойдет и до посещения Титана людьми.
С.СЛАВИН
Кстати…ИЗ ИСТОРИИ ТИТАНА
В марте 1665 года выдающийся ученый XVII века Христиан Гюйгенс обнаружил крупнейший спутник Сатурна, получивший имя Титан.
До недавнего времени люди знали о Титане сравнительно немного. Спутник обегает полный круг вокруг Сатурна за 16 земных суток. Расстояние между планетой и самой крупной его луной составляет порядка миллиона километров. Диаметр Титана — 5140 км, а масса его почти вдвое превышает массу нашей Луны.
Титан стал четвертым космическим телом в Солнечной системе, поверхность которого сфотографирована посадочными аппаратами. До этого высадки осуществлялись на Луну (аппарат «Луна-9», 1966 г., СССР), Венеру («Венера-9», 1975 г., СССР) и Марс («Викинг-1», 1976 г., США).
ВОЗВРАЩАЯСЬ К НАПЕЧАТАННОМУ
Воздушный шарик в космос все-таки взлетит…
Мы уже рассказывали вам о том, как юные техники из п. Гусино, что в Смоленской области, предложили создавать космические корабли наподобие мыльных пузырей (см. подробности в «ЮТ» № 2 за 2004 г.). Там же мы упомянули и о том, как эту же идею начали разрабатывать специалисты НАСА и других зарубежных космических агентств. Теперь с гордостью можем сообщить, что российские специалисты не остались в стороне…
Зеркала антенн и телескопов, стены и перегородки космической станции, панели солнечных батарей, даже дома для Луны или Марса — все это позволяет создать технология, разрабатываемая российскими учеными из Научно-производственного объединения имени С.А. Лавочкина. Вот что рассказал журналистам представитель разработчиков, руководитель проекта, главный специалист Научно-исследовательского центра имени Г.Н. Бабакина при НПО имени Лавочкина Сергей Иванов.
Сегодня доставка в космос килограмма полезной нагрузки стоит от 10 до 20 тыс. долларов. Понятно, специалисты стараются максимально экономить, делая свои конструкции как можно более легкими и компактными. Но что на свете может быть легче мыльного пузыря? Тем более что для его получения необходимо самое простейшее оборудование. Эта простота и подкупила космических специалистов.
Они, конечно, не собираются прямо на Земле выдувать некие, особо прочные, мыльные пузыри, которые смогут подниматься до космических высот. Нет, операция будет выглядеть куда прозаичнее. На космодром доставят что-то вроде невзрачных влажных мешков в плотных пакетах.
На одном, например, будет написано — перегородка номер такая-то жилого отсека. На другом, может быть, — рабочий стол. На третьем — зеркало телескопа…
Вариантов масса, и как это будет выглядеть наверняка — пока не так уж существенно. Важно то, что на орбите каждую заготовку надуют с помощью баллончика со сжатым газом. И уже через несколько часов ткань превратится в жесткую прочную конструкцию в форме стола, перегородки или зеркала.
Более того, из пневматических отверждающихся конструкций наши инженеры предлагают строить отсеки космических станций, а также будущих лунных и марсианских баз.
«Вспомните, — продолжал свой рассказ Сергей Иванов, — чтобы построить МКС, пришлось перевезти в космос сотни тонн груза, потратив на это более 5 лет времени и уйму денег. И станцию до сих пор еще не достроили»…
По новой же технологии космическое строительство намного упрощается. Оболочку раскраивают, шьют и клеят в специализированных мастерских на Земле. Здесь же пропитывают специальным составом и пакуют до поры до времени в герметичную оболочку. Пакет достигнет своего рабочего объема уже непосредственно в космосе. Здесь же из состава, которым пропитана оболочка, улетучится и растворитель. И пропитанный материал превратится в прочный, негорючий «панцирь».
Как это делается, Сергей Иванов продемонстрировал на макете. Взял тонкую трубу из специального синтетического материала и полил ее водой. Через несколько минут материал стал мягким и гибким, труба легко складывается в маленькую гармошку. Именно она и отправится космос. А там достаточно вдуть в нее сжатый газ, и гармошка расправится, отвердеет и снова станет трубой.
Способны помочь подобные конструкции и при освоении Марса. Чтобы добраться до Красной планеты, космическому кораблю потребуется очень много энергии. Брать такое количество топлива с собой с Земли — немыслимо. Целесообразней черпать энергию по дороге, если можно так выразиться, из самого космоса. Скажем, можно установить на борту корабля солнечную электростанцию мощностью в несколько мегаватт.
Однако такая станция будет представлять собой гигантское сооружение площадью около 60 тысяч кв. м — десять футбольных полей. Представляете, сколько потребуется запустить «Протонов» и «Шаттлов» с элементами конструкции, чтобы собрать такую электростанцию на орбите?
Пневмоконструкции позволят сократить число рейсов на порядок. Долговечность же их, по утверждениям специалистов, не меньше, чем у металлических — около 15 лет.
Вскоре ракета «Волна» выведет на орбиту спутник, где предусмотрен небольшой контейнер для солнечных батарей. Если разместить в нем «мягкие» конструкции, то можно будет развернуть в космосе две солнечные батареи по 12 кв. м каждая. Это позволит получить мощность в 2400 ватт. Батарея же на жестком каркасе имеет площадь всего 0,5 кв. м, а мощность лишь 50 ватт. Более того, выигрыш в массе в 10 раз!
К сказанному остается добавить, что новая технология создается при поддержке Международного научно-технического центра, а также в тесном взаимодействии с европейскими партнерами. Кстати, на ракете «Волна» будут проверены два способа развертывания конструкции в космосе — российский и европейский. Какой лучше — покажет эксперимент.