Категории
Самые читаемые

Происхождение миров - Поль Лаберенн

Читать онлайн Происхождение миров - Поль Лаберенн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 30 31 32 33 34 35 36 37 38 ... 57
Перейти на страницу:

Первые теории, созданные с целью показать возможность такого восстановления корпускулярной материи, как, например, теория Нернста, прибегали еще за помощью к световому эфиру — в том виде, как его представляли в конце последнего века. Это была гипотетическая среда — носитель световых и электромагнитных явлений, заполняющая все пространство, являющаяся одновременно и невесомой и твердой и обладающая столькими противоречивыми свойствами, что пришлось отказаться от предположения о ее существовании. Мы не будем останавливаться на этих теориях, так как их основы были разрушены современной наукой, и рассмотрим те решения данной проблемы, которые можно предвидеть сегодня.

«Материализация» фотона

Проблема могла быть поставлена корректно благодаря созданию квантовой теории света, которая была выдвинута впервые в 1905 г. Эйнштейном и в дальнейшем получила блестящее подтверждение.[98]

В 1925 г. немецкий ученый Штерн поставил вопрос, не может ли столкновение двух частиц света (или, как их называют, двух фотонов) привести к рождению атома водорода, т. е. довольно сложной системы, состоящей из ядра с положительным электрическим зарядом (или протона) и из материальной частицы, заряженной отрицательно (или электрона). Штерн сделал вывод о возможности подобного явления при выполнении целого ряда условий, которые весьма редко могут быть осуществлены, особенно в межзвездном пространстве.[99] Действительно, это возможно, по Штерну, прежде всего лишь в условиях исключительно высокой температуры (равной многим миллионам градусов); впрочем, и обратное превращение, т. е. возникновение двух фотонов вследствие распада атома водорода, требует такой же температуры. Кроме того, для этого необходима исключительно большая плотность фотонов в данной области пространства. В 1931 г. немецкий ученый Доннан пришел к аналогичным выводам (в частности, в отношении температурных условий).

По мнению этих ученых, превращение излучения в корпускулярную материю может происходить лишь во внутренних и очень горячих областях звезд. Оно не может иметь места в межзвездном пространстве, и его нельзя, разумеется, воспроизвести сейчас в лабораториях.

Но вопреки этому мнению именно в лаборатории была осуществлена двадцать лет назад «материализация» фотонов, правда, в рамках иного процесса, чем тот, который рассматривался Доннаном и Штерном. Речь идет об экспериментальных работах Андерсона и супругов Жолио-Кюри. Хотя эти ученые и не занимались построением атома водорода путем столкновения двух фотонов, но, по крайней мере, обнаружили возможность эффективной «материализации» фотонов и создания в лабораториях более сложных атомов из более простых.

Первое явление такого рода было обнаружено в лабораториях в результате изучения некоторых свойств так называемых космических лучей. Космические лучи, приходящие на Землю по всем направлениям из пространства, обладают очень большой проницающей силой и содержат в числе других маленькие заряженные частицы, аналогичные электронам, но заряженные положительно — отсюда их название «положительных электронов» или позитронов. Подобные частицы до 1933 г., когда их открыл американский ученый Андерсон, никогда еще не наблюдались.

Андерсон, бомбардируя пластинку свинца радиоактивным излучением тория, сумел получить в лаборатории те же позитроны, сопровождаемые отрицательными электронами. Он объяснил появление этих частиц тем, что фотон с большой энергией, излучаемый торием, при встрече с ядром атома свинца превращается в две материальные частицы, обладающие противоположными электрическими зарядами. Таким образом, можно сделать вывод о настоящей «материализации» излучения (именно этот термин использовали супруги Жолио-Кюри, которые повторили подобный опыт во Франции), поскольку фотон, частица излучения, рождает две частицы вещества: отрицательный и положительный электроны. Наоборот, если отрицательный электрон встречается с позитроном, то они могут «дематериализоваться» («аннигилироваться»), превращаясь в два фотона (опыты Ф. Жолио и Ж. Тибо).

Супруги Жолио-Кюри пошли гораздо дальше в своих исследованиях и сумели осуществить превращение одних химических элементов в другие, подвергая их воздействию излучения различного рода. В большом числе случаев образованные таким путем новые элементы сразу же распадаются, давая начало третьим элементам (искусственная радиоактивность). Так, например, бомбардируя соответствующим излучением алюминий, эти ученые превратили его в неустойчивый фосфор, который вел себя как радиоактивный элемент в течение нескольких минут, а затем (через достаточно большой промежуток времени) окончательно превращался в кремний. В то же самое время можно было наблюдать образование многочисленных позитронов. Следует обратить внимание на то, что атомное число (соответствующее степени сложности атомной структуры) для получаемого кремния меньше такового для фосфора, но больше атомного числа первичного алюминия.

Эти работы, продолженные многочисленными коллективами ученых всех стран, привели к осуществлению превращений всех известных химических элементов. Более того, они позволили создать совсем новые химические элементы. Если русский ученый Менделеев насчитывал в своей периодической таблице 63 элемента, то теперь их известно уже 101. Новые элементы, полученные искусственным путем, неустойчивы и быстро превращаются вследствие радиоактивного распада в элементы с устойчивыми атомами.

В заключение можно сделать следующий вывод:

1. Корпускулярная «материализация» излучения осуществляется в лабораторных условиях при превращении фотона в пару «электрон — позитрон» и при этом не требуется ни очень высокой температуры, ни исключительной плотности фотонов. Правда, одна из двух частиц, образующихся из фотона, — позитрон, не входит в состав частиц, образующих атомы, и превращается быстро опять в излучение, если образование позитрона происходит не в пустоте (где он может существовать неограниченное время). Но во всяком случае «положительный электрон» — позитрон — существует и является одной из важных составляющих вещества. С другой стороны, возможна «дематериализация» (аннигиляция) двух противоположно заряженных частиц — электрона и позитрона, столкновение которых приводит к возникновению двух или более фотонов.

2. Из атомов, имеющих простое строение, можно построить более сложные атомы, например атомы кремния из атомов алюминия. Такое превращение в направлении, противоположном обычной радиоактивности («восстановление» вещества), часто сопровождается излучением позитронов. Вспомним, что именно на основании этих исследований, касающихся превращения элементов, Бете создал теорию, объясняющую исключительно большое выделение энергии звездами.

В 1939 г., перед второй мировой войной, Ж. Соломон, один из самых многообещающих молодых французских физиков (которого немцы расстреляли 23 мая 1942 г. за его участие в движении Сопротивления), написал относительно понятия материи следующее:[100]

«Не следует таким образом приписывать буквальный смысл выражениям — материализация или дематериализация, обозначающим всего-навсего переход из одного состояния материи в другое…».[101]

На пути к «изготовлению» атомных ядер в лабораториях

По поводу описанных выше опытов можно сделать замечание, что ни в одном из них не наблюдалась «материализация» фотонов в частицы, входящие в состав ядер атомов. Действительно, при всех превращениях, приводящих к возникновению элементов с более высоким атомным весом, участвует излучение, но описанное выше восстановление вещества не сопровождается поглощением излучения.

Современная наука открывает, однако, гораздо более широкие перспективы. Исследования атомных превращений вынудили, как мы уже указывали в гл. II в связи с теорией Бете, заняться конструированием различных ускорителей частиц: циклотронов, бетатронов, синхротронов и др. Благодаря этим ускорителям не только можно осуществлять все более и более многообразные атомные превращения и воссоздать новые недавно открытые составляющие космического излучения, как, например, мезоны,[102] но можно также значительно углубить наши знания относительно строения атома. Было обнаружено, что наряду с электронами и протонами имеются другие частицы, из которых, во всяком случае, нейтроны, имеющие массу приблизительно равную по величине массе ядра атома водорода, но лишенные электрического заряда, играют исключительно важную роль.[103]

В настоящее время во многих странах, в частности, в СССР и США, используют гигантские ускорители частиц. Эти ускорители сообщают частицам энергию в сотни тысяч раз большую, чем та, с которой имел дело в своих опытах Андерсон. Некоторые современные ускорители имеют более 200 метров в диаметре и снабжены магнитами весом в тысячи тонн.[104]

1 ... 30 31 32 33 34 35 36 37 38 ... 57
Перейти на страницу:
Тут вы можете бесплатно читать книгу Происхождение миров - Поль Лаберенн.
Комментарии