Игра в имитацию - Эндрю Ходжес
Шрифт:
Интервал:
Закладка:
В основу топологии легла теория множеств, таким образом Ньюман принял участие и в разработке теории множеств. Также он принял участие в Международном математическом конгрессе в Болонье в 1928 году, на котором Гильберт представлял Германию, исключенную ранее в 1924 году. На этом съезде Гильберт снова заявил о необходимости изучения оснований математики. И именно в рамках научного подхода Гильберта, нежели чем с позиции продолжения курса логистики Рассела, Ньюман читал свои лекции студентам. Несомненно, подход Рассела начал постепенно терять интерес, как только сам Рассел покинул Кембриджский университет в 1916 году, когда впервые был осужден и лишен своего звания профессора в Тринити-Колледже. Что касается его современников, то Людвиг Витгенштейн к тому времени изменил область своих интересов, Гарри Нортон сошел с ума, а Фрэнк Рэмси ушел из жизни в 1930 году. Судьба распорядилась таким образом, что Ньюман остался единственным человеком в Кембриджском университете, обладающим обширными познаниями в области математической логики, хотя, следует отметить, что были и другие не менее выдающиеся специалисты в этой области, и среди них — Брейтвейт и Харди, чей интерес составляли различные методы и подходы в изучении математических наук.
В сущности программа Гильберта представляла собой более подробный вариант работы, над которой он начал трудиться в 1890-е годы. В ней не предпринималось попыток ответить на вопрос, занимавший Фреге и Рассела, а именно — чем на самом деле является математика. В этом отношении она носила менее философский характер и казалась менее претенциозной. С другой стороны, она имела большие перспективы в том отношении, что в ней автор ставил более глубокие и трудноразрешимые вопросы о природе таких систем, которые представил Рассел. Фактически Гильберт сформулировал проблему, требовавшую ответа на вопрос: в чем, в принципе, заключались пределы возможностей аксиоматической системы, подобной представленной в «Принципах математики». Существует ли способ выяснить, что могло быть доказано, а что нет в рамках подобной теории? Подход Гильберта назвали формалистским, поскольку он пытался интерпретировать математику через формализацию, которая, в принципе, превращает ее из системы знаний в игру со знаками и формулами, в которую играют по фиксированным правилам, сравнимую с шахматами. Допустимые шаги доказательства рассматривались как допустимые ходы в шахматной игре, фигурам соответствовал ограниченный — или неограниченный — набор знаков в математике; произвольной позиции фигур на доске — сочетание знаков в формуле. Одна формула или несколько формул рассматривались Гильбертом как аксиомы. Их аналог в шахматной игре — установленная правилами шахматная позиция в начале игры. По этой аналогии «игра шахматными фигурами» означала «производимые вычисления», а определенные формулы шахматной игры (например, если имеется два коня и король — поставить мат возможно лишь если защищающийся допустит грубую ошибку) соответствовали определенным правилам вывода, согласно с которыми новые формулы могли быть получены из заданных формул.
На конгрессе 1928 года Гильберт представил более конкретную формулировку своих вопросов. Во-первых, можно ли назвать математику полной в том смысле, что для каждого осмысленного утверждения (например, «всякое натуральное число есть сумма четырех квадратов целых чисел») существует свое доказательство или же опровержение. Во-вторых, можно ли назвать математику непротиворечивой или последовательной в том смысле, что утверждение «2 + 2 = 5» ни при каких условиях не могло быть получено в результате ряда операций, соответствующих правилам вывода. И, в-третьих, является ли математика разрешимой? Под этим имелось в виду, существовал ли определенный метод, который мог бы в принципе быть применен к любому утверждению и который гарантировано сможет ответить на вопрос, является ли утверждение верным.
В 1928 году ни одна из этих проблем не была решена. Однако Гильберт был уверен, ответ на каждый из его вопросов в результате окажется положительным. Ранее в своем докладе на Международном конгрессе в Париже он заявил: «Мы все убеждены в том, что любая математическая задача поддается решению. Это убеждение в разрешимости каждой математической проблемы является для нас большим подспорьем в работе, когда мы приступаем к решению математической проблемы, ибо мы слышим внутри себя постоянный призыв: вот проблема, ищи решение. Ты можешь найти его с помощью чистого мышления, ибо в математике не существует ignorabimus», — и когда в соответствии с уставом университета Гильберт ушел в отставку в 1930 году, он заявил следующее:
Пытаясь привести пример неразрешимой проблемы, философ Конт однажды сказал, что науке никогда не удастся распознать секрет химического состава небесных тел. Спустя несколько лет эта проблема была решена… Истинная причина, из-за которой, по моему мнению, Конт не смог найти неразрешимую проблему, заключается в том, что в действительности такой вещи, как неразрешимая проблема, вообще не существует.
Такой взгляд на науку, казалось, был позитивнее, чем сами позитивисты. Однако, на том самом съезде юный чешский математик Курт Гёдель представил результаты своей работы, наделавшей немало шума.
Гёделю удалось доказать теорему о неполноте арифметики, которая гласила: не каждая определенная математическая проблема доступна строгому решению. Своё исследование он начинал с аксиом Пеано для арифметики целых чисел, а позже расширил его, применив простую теорию типов таким образом, чтобы система представляла множества целых чисел, множества множеств целых чисел и так далее. И всё же его доказательство оставалось применимым к любой формальной математической системе, которая включала в себя теорию чисел, а тонкости аксиоматики не играли решающей роли.
Затем ему удалось доказать, что все операции, производимые в ходе доказательства, то есть правила логической дедукции, применяемые в «шахматной партии», сами по себе являются арифметическими. Из этого следует, что используемые при доказательстве операции вычисления и сравнения с целью выявить, корректно ли одна формула заменена другой, точно так же верность текущего хода в шахматной партии может быть просчитана при помощи вычисления и сравнения возможных позиций шахматных фигур. Фактически Гёделю удалось доказать, что формулы его системы могут быть закодированы в виде целых чисел. Таким образом, целые числа могли представлять собой утверждения о них самих. В этом и заключалась основная идея его работы.
(adsbygoogle = window.adsbygoogle || []).push({});