Категории
Самые читаемые

Геном - Мэтт Ридли

Читать онлайн Геном - Мэтт Ридли

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 45 46 47 48 49 50 51 52 53 ... 88
Перейти на страницу:

В конце 1970-х годов два немецких исследователя, Яни Нюссляйн-Фолхард (Jani Nusslein-Volhard) и Эрик Вишаус (Eric Wieschaus), решили описать и изучить все известные мутации развития у дрозофил. Они добавляли в питатель­ную среду для мух мутагенные вещества и отбирали экзем­пляры, у которых лапки, крылья и другие части тела были не на месте. Постепенно стала вырисовываться целостная кар­тина из генов разного масштаба. Стало ясно, что в геноме у дрозофилы есть «стратегические» гены, контролирующие развитие основных частей тела: головы, груди и брюшка. Другие «тактические» гены определяют развитие лапок, уси­ков и крыльев на основных частях тела. И, наконец, «локаль­ные» гены контролируют отдельные сегменты или области на туловище и конечностях мухи. Другими словами, гомео- зисные гены дрозофилы разделены на артели и бригады со своими прорабами и руководителями, между которыми весь организм мухи поделен на зоны ответственности (Nusslein-Volhard J., Wieschaus E. 1980. Mutations affecting segment number and polarity in Drosophila. Nature 287: 795-801).

Открытие было совершенно неожиданным. Раньше счи­талось, что каждая часть тела развивается самостоятельно в соответствии с сигналами от соседних органов. Идея о том, что для каждой части тела существует свой генетиче­ский план развития, казалась странной и неправдоподоб­ной. Но еще больше сюрпризов принесло открытие и рас­шифровка самих этих генов. Данное открытие признано одним из наиболее ярких достижений науки в XX столетии. Ученые обнаружили кластер из восьми гомеозисных генов, собранных вместе на одной хромосоме. В научных статьях их называют Нож-генами. Но особенно удивительным было то, что каждый из генов контролирует развитие определен­ного сегмента тела дрозофилы, причем на хромосоме эти гены лежат в том порядке, в каком следуют друг за другом сегменты тела. Первый ген контролирует развитие рта, второй — лицевой части головы, третий — задней части го­ловы, четвертый — шейного сегмента, пятый — груди, ше­стой — передней половины брюшка, седьмой — задней по­ловины брюшка и восьмой — отдельных частей на брюшке. Не только гены, но их последовательность на хромосоме оказались не терпящими изменений.

Чтобы оценить всю неожиданность этого открытия, вам следует знать, насколько безразлично организм относится к размещению других генов на хромосомах. В этой книге я целенаправленно подбирал гены на хромосомах, чтобы ввести их в логическую канву книги. Но в предисловии я предупредил вас, чтобы вы не попались на эту удочку, — в распределении генов по хромосомам нет и не может быть никакой логики. Иногда организму бывает полезно, чтобы один ген находился рядом с другим, но эти союзы крайне непостоянны. Что касается гомеозисных генов, то это, по­жалуй, единственный случай, когда очередность генов на хромосоме имеет смысл.

На очереди уже стоял следующий сюрприз. В 1983 году группа ученых из лаборатории Уолтера Геринга (Walter Gehring) в Базеле обнаружила, что все гомеозисные гены содержат внутри одинаковую последовательность из 180 нуклеотидов. Ее назвали гомеоблоком. Сначала это показа­лось странным: если все гены одинаковы, то почему один дает команду на развитие лапок, а другой — на развитие уси­ков? Но, видимо, эти команды зашифрованы в остальной части генов. У всех электроприборов есть вилка для вклю­чения в сеть. Невозможно отличить тостер от лампы, если смотреть только на вилку электропитания. Аналогия между гомеоблоком и вилкой включения в сеть оказалась очень близкой. Гомеоблоку соответствует фрагмент белка, с помо­щью которого этот белок может прикрепляться к молекуле ДНК и включать или выключать другие гены. Все гомеозис­ные гены оказались прописями регуляторных белков, роль которых состоит в управлении другими генами.

Ученые использовали стабильную структуру гомеоблоков для поиска гомеозисных генов в других геномах точно так же, как старьевщик роется на свалке в поисках приборов с вилками электропитания. Коллега Геринга Эдди де Робертис (Eddie de Robertis), действуя, скорее, интуитивно, обнару­жил среди генов лягушки такие, в которых содержалась по­следовательность нуклеотидов, напоминающая гомеоблок. Затем ученый перешел к генам мыши. И здесь нашлись гены практически с таким же участком ДНК из 180 «букв». Точно так же, как и у дрозофилы, в геноме мыши эти гены были объединены в кластеры (отличие состояло в том, что было обнаружено четыре кластера гомеозисных генов) и, более того, в кластере гены были организованы в том же порядке: спереди — «ген головы», сзади — «ген хвоста».

Обнаруженная гомология между мышью и мушкой дро­зофилой была довольно неожиданной, поскольку означала, что для правильного развития эмбрионов всех организмов важно не только наличие нужных генов, но и их правиль­ная очередность на хромосоме. Но еще больше поразило то, что гомеозисные гены мухи и мыши были сходными. Так, первый ген в кластере у дрозофилы, названный lab, в точности походил на первые гены трех кластеров в геноме мыши: аг, Ы и di, — и все последующие гены в кластере соот­ветствовали своим аналогам в обоих геномах (McGinnis et al. 1984. A homologous protein coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 37: 403-408; Scott M., Weiner A. J. 1984. Structural relation­ships among genes that control development: sequence homo­logy between the Antennapedia, Ultrabithorax, and fushi tarazu loci of Drosophila. Proceedings of the National Academy of Science of the USA81: 4115-4119).

Есть, конечно, и отличия. В геноме мыши 39 Нох-генов, организованных в четыре кластера, и в конце каждого кла­стера есть по пять дополнительных генов, которых нет у дрозофилы. Кластеры также отличаются между собой. Некоторые гены представлены в одних кластерах и про­пущены в других. Но сходство гомеозисных генов мухи и мыши все же будоражит воображение. Это было настолько неожиданное открытие, что многие эмбриологи даже не восприняли его всерьез. Было очень много скептицизма и разговоров о том, что открытие является результатом силь­ного преувеличения случайных совпадений. Один ученый вспоминал, что когда впервые услышал об этом открытии, сразу же отбросил его как «очередную сумасбродную идею Геринга». Но очень скоро стало ясно, что Геринг не шутил. Джон Мэдцокс (John Maddox), редактор журнала Nature (Nature— самый рейтинговый и авторитетный междуна­родный биологический журнал — примеч. ред.), назвал это открытие самым важным за последние годы в генетике. Эмбриологи должны низко поклониться мушке дрозофиле. В геноме человека тоже есть //ох-кластеры. Их столько же, сколько и у мыши, и один из них — кластер С — лежит на хромосоме 12.

Из этого открытия следуют два основных вывода: один эволюционный, а другой прикладной. С точки зрения эво­люции становится очевидной общность происхождения многоклеточных организмов от одного предка, в котором более 530 млн лет тому назад уже использовался точно та­кой механизм управления развитием эмбрионов. Данный механизм оказался настолько удачным, что он сохранил­ся неизменным во всех ветвях эволюции, идущих от этого ствола. Все современные организмы, даже такие причудли­вые, как морские ежи, содержат в геномах одни и те же кла­стеры гомеозисных генов. Как бы ни отличались мы от мухи или морского ежа, наши эмбрионы развиваются по одному и тому же механизму. Невероятный консерватизм генов эм­бриогенеза оказался полной неожиданностью абсолютно для всех. Прикладной аспект открытия состоял в том, что появилась уверенность в возможности использования зна­ний о генетике дрозофилы, накопленных в течение десяти­летий, для объяснения и изучения работы генома человека. До сих пор ученые знают гораздо больше о генетике дрозо­филы, чем человека, поскольку геном мухи гораздо компак­тнее. При этом всегда были сомнения по поводу того, при­менимы ли закономерности, выявленные на дрозофилах, к человеку. Теперь мы видим, что базовые генетические ме­ханизмы оказались более консервативными, чем это можно было предположить. Появилась возможность сквозь призму генома дрозофилы пролить свет на геном человека.

Поразительное сходство было обнаружено между другими генами, участвующими в управлении развитием эмбриона. Раньше считалось, что голова — это изобретение хордовых, у которых появились специальные гены, контролирующие развитие черепно-мозговой коробки на передней оконеч­ности тела. Но теперь стало известно, что две пары генов мыши, контролирующих развитие мозга — Ofoси Етх, — в точ­ности соответствуют генам дрозофилы, которые так же кон­тролируют развитие головы мухи. ген дрозофилы, неспра­ведливо названный геном безглазия, который управляет раз­витием глаз мухи, оказался идентичным соответствующему гену мыши, которому присвоили имя рах-6. Геномы мыши и человека настолько похожи, что все сказанное выше также применительно к человеку. Муха и человек — это всего лишь вариации проекта построения тела, который был разрабо­тан еще у нашего червеобразного общего предка, жившего в кембрийский период. У всех его предков одни и те же гены выполняют определенную работу. Конечно, есть различия, иначе нас нельзя было бы отличить от мух. Но разительные внешние отличия оказались результатом незначительных вариаций основного механизма. 

1 ... 45 46 47 48 49 50 51 52 53 ... 88
Перейти на страницу:
Тут вы можете бесплатно читать книгу Геном - Мэтт Ридли.
Комментарии