Категории
Самые читаемые
PochitayKnigi » Компьютеры и Интернет » Программирование » Изучай Haskell во имя добра! - Миран Липовача

Изучай Haskell во имя добра! - Миран Липовача

Читать онлайн Изучай Haskell во имя добра! - Миран Липовача

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 51 52 53 54 55 56 57 58 59 ... 96
Перейти на страницу:

2

25

10

8

0

Чтобы разобрать входной файл в уме, представьте его в виде дерева и разбейте систему дорог на секции. Каждая секция состоит из дороги A, дороги B и пересекающей дороги. Чтобы представить это в виде дерева, мы предполагаем, что есть последняя замыкающая секция, которую можно проехать за 0 секунд, так как нам неважно, откуда именно мы въедем в город: важно только, что мы в городе.

Будем решать проблему за три шага – так же мы поступали при создании вычислителя выражений в ОПЗ:

1. На минуту забудьте о языке Haskell и подумайте, как бы вы решали эту задачу в уме. При решении предыдущей задачи мы выясняли, что для вычисления в уме нам нужно держать в памяти некоторое подобие стека и проходить выражение по одному элементу за раз.

2. Подумайте, как вы будете представлять данные в языке Haskell. В вычислителе ОПЗ мы решили представлять выражение в виде списка строк.

3. Выясните, как манипулировать данными в языке Haskell так, чтобы получить результат. В прошлом разделе мы воспользовались левой свёрткой списка строк, используя стек в качестве аккумулятора свёртки.

Вычисление кратчайшего пути

Итак, как мы будем искать кратчайший путь от Хитроу до Лондона, не используя программных средств? Мы можем посмотреть на картинку, прикинуть, какой путь может быть оптимальным – и, вероятно, сделаем правильное предположение… Вероятно, если дорога небольшая; ну а если у неё насчитывается 10 000 секций? Ого! К тому же мы не будем знать наверняка, что наше решение оптимально: можно лишь сказать, что мы более или менее в этом уверены. Следовательно, это плохое решение.

Посмотрим на упрощённую карту дорожной системы. Можем ли мы найти кратчайший путь до первого перекрёстка (первая точка на A, помеченная A1)? Это довольно просто. Легко увидеть, что будет быстрее – проехать по A или проехать по B и повернуть на A. Очевидно, что выгоднее ехать по B и поворачивать: это займёт 40 минут, в то время как езда напрямую по дороге A займёт 50 минут. Как насчёт пересечения B1? То же самое! Значительно выгоднее ехать по B (включая 10 минут), так как путь по A вместе с поворотом займёт целых 80 минут.

Теперь мы знаем, что кратчайший путь до A1 – это движение по дороге B и переезд на дорогу A по отрезку, который мы назовём C (общее время 40 минут), а также знаем кратчайший путь до B1 – проезд по дороге B (10 минут). Поможет ли нам это, если нужно узнать кратчайший путь до следующего перекрёстка? Представьте себе, да!

Найдём кратчайший путь до пункта A2. Мы можем проехать до A2 из А1 напрямую или ехать через B1 (далее – до B2 либо повернуть на перпендикулярную дорогу). Поскольку мы знаем время пути до A1 и B1, можно легко определить кратчайший путь до A2. Наименьшее время пути до A1 – 40 минут, и ещё за 5 минут мы доберёмся до A2; в результате минимальное время пути на отрезке B–C–A составит 45 минут. Время пути до B1 – всего 10 минут, но затем потребуется ещё целых 110, чтобы добраться до B2 и проехать поворот. Очевидно, кратчайший путь до A2 – это B–C–A. Аналогично кратчайший путь до B2 – проезд до A1 и поворот на другую дорогу.

ПРИМЕЧАНИЕ. Возможно, вы задались вопросом: а что если добраться до A2, переехав на B1 и затем двигаясь прямо? Но мы уже рассмотрели переезд из B1 в A1, когда искали лучший путь до A1, так что нам больше не нужно анализировать этот вариант.

Итак, мы вычислили кратчайшие пути до A2 и B2. Продолжать в том же духе можно до бесконечности, пока мы не достигнем последней точки. Как только мы выясним, как быстрее всего попасть в пункты А4 и В4, можно будет определить самый короткий путь – он и будет оптимальным.

В общем-то для второй секции мы повторяли те же шаги, что и для первой, но уже принимая во внимание предыдущие кратчайшие пути до A и B. Мы можем сказать, что на первом шаге наилучшие пути были пустыми, с «нулевой стоимостью».

Подведём итог. Чтобы вычислить наилучший путь от Хитроу до Лондона, для начала следует найти кратчайший путь до перекрёстка на дороге A. Есть два варианта: сразу ехать по A или двигаться по параллельной дороге и затем сворачивать на дорогу A. Мы запоминаем время и маршрут. Затем используем тот же метод для нахождения кратчайшего пути до следующего перекрёстка дороги B и запоминаем его. Наконец, смотрим, как выгоднее ехать до следующего перекрёстка на дороге A: сразу по A или по дороге B с поворотом на A. Запоминаем кратчайший путь и производим те же расчёты для параллельной дороги. Так мы анализируем все секции, пока не достигнем конца. Когда все секции пройдены, самый короткий из двух путей можно считать оптимальным.

Вкратце: мы определяем один кратчайший путь по дороге A и один кратчайший путь по дороге B; когда мы достигаем точки назначения, кратчайший из двух путей и будет искомым. Теперь мы знаем, как решать эту задачу в уме. Если у вас достаточно бумаги, карандашей и свободного времени, вы можете вычислить кратчайший путь в дорожной сети с любым количеством секций.

Представление пути на языке Haskell

Следующий наш шаг: как представить дорожную систему в системе типов языка Haskell? Один из способов – считать начальные точки и перекрёстки узлами графа, которые ведут к другим перекрёсткам. Если мы представим, что начальные точки связаны друг с другом дорогой единичной длины, мы увидим, что каждый перекрёсток (или узел графа) указывает на узел на противоположной стороне, а также на следующий узел с той же стороны. За исключением последних узлов они просто показывают на противоположную сторону.

data Node = Node Road Road | EndNode Road

data Road = Road Int Node

Узел – это либо обычный узел, указывающий путь до противоположной дороги и путь до следующего узла по той же дороге, либо конечный узел, который содержит информацию только о противоположной дороге. Дорога хранит информацию о длине отрезка и об узле, к которому она ведёт. Например, первая часть дороги A будет представлена как Road 50 a1, где a1 равно Node x y; при этом x и y – дороги, которые ведут к B1 и A2.

Мы могли бы использовать тип Maybe для определения данных Road, которые указывают путь по той же дороге. Все узлы содержат путь до параллельной дороги, но только те узлы, которые не являются конечными, содержат пути, ведущие вперёд.

data Node = Node Road (Maybe Road)

data Road = Road Int Node

Можно решить задачу, пользуясь таким способом представления дорожной системы; но нельзя ли придумать что-нибудь попроще? Если вспомнить решение задачи в уме, мы всегда проверяли длины трёх отрезков дороги: отрезок по дороге A, отрезок по дороге B и отрезок C, который их соединяет. Когда мы искали кратчайший путь к пунктам A1 и B1, то рассматривали длины первых трёх частей, которые были равны 50, 10 и 30. Этот участок сети дорог назовём секцией. Таким образом, дорожная система в нашем примере легко может быть представлена в виде четырёх секций: (50, 10, 30), (5, 90, 20), (40, 2, 25) и (10, 8, 0).

Всегда лучше делать типы данных настолько простыми, насколько это возможно – но не проще!

data Section = Section { getA :: Int, getB :: Int, getC :: Int }

   deriving (Show)

type RoadSystem = [Section]

Так гораздо ближе к идеалу! Записывается довольно просто, и у меня есть предчувствие, что для решения нашей задачи такое описание подойдёт отлично. Секция представлена обычным алгебраическим типом данных, который содержит три целых числа для представления длин трёх отрезков пути. Также мы определили синоним типа, который говорит, что RoadSystem представляет собой список секций.

ПРИМЕЧАНИЕ. Для представления секции дороги мы могли бы использовать кортеж из трёх целых чисел: (Int, Int, Int). Кортежи вместо алгебраических типов данных лучше применять для решения маленьких локальных задач, но в таких случаях, как наш, лучше создать новый тип. Это даёт системе типов больше информации о том, что есть что. Мы можем использовать (Int, Int, Int) для представления секции дороги или вектора в трёхмерном пространстве и оперировать таким представлением, но тут не исключена путаница. А вот если использовать типы данных Section и Vector, мы не сможем случайно сложить вектор с секцией дорожной системы.

1 ... 51 52 53 54 55 56 57 58 59 ... 96
Перейти на страницу:
Тут вы можете бесплатно читать книгу Изучай Haskell во имя добра! - Миран Липовача.
Комментарии