Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Прочая научная литература » Космическая технология и производство - Сергей Гришин

Космическая технология и производство - Сергей Гришин

Читать онлайн Космическая технология и производство - Сергей Гришин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 14
Перейти на страницу:

Рис. 8. Патрон для эксперимента «Универсальная печь» (1 — графитовый нагревательный блок; 2 — графитовый тепловой вкладыш; 3 — оболочка из нержавеющей стали; 4 — изоляция; 5 — запорный механизм; 6 — блок отвода тепла; 7 — медный тепловой вкладыш)

Анализ доставленных на Землю образцов показал, что, вопреки ожиданиям, после переплава и затвердевания в условиях, близких к невесомости, распределение примесей в поперечном сечении образца стало менее однородным. При этом более легкая примесь (кремний) сместилась в одном направлении по диаметру образца, а более тяжелая (сурьма) — в противоположном. Такое перераспределение примесей в образце, возможно, связано с тем, что именно по диаметру ампулы действовали во время эксперимента малые ускорения, обусловленные работой двигателей системы ориентации и стабилизации корабля. Однако конкретный механизм процессов, приведших к ухудшению однородности распределения примеси в этом эксперименте, в настоящее время однозначно не установлен.

Возможно, что для того диапазона ускорений, которые наблюдались на борту корабля «Аполлон» во время эксперимента «Универсальная печь», конвекционные течения были особенно интенсивны. Выполненные советскими учеными с помощью ЭВМ расчеты процессов тепло- и массопереноса для условий, соответствующих этому эксперименту, подтвердили такую возможность. В этом случае перераспределение примесей в расплаве и ухудшение однородности образца после его перекристаллизации в космосе следует связать именно с возникшими в расплаве конвекционными течениями. Но возможны и другие объяснения результатов эксперимента «Универсальная печь».

Рассмотренные эксперименты показали, что для правильной организации в космосе процессов массопереноса необходимо обеспечить такие условия, когда конвекционными эффектами можно пренебречь. В противном случае в зависимости от конкретных условий возможно как повышение, так и ухудшение однородности распределения примесей в исследуемых материалах.

Если в приведенных примерах необходимо было проанализировать возможное влияние на процессы тепло- и массопереноса естественной конвекции, которая зависит от величины малого ускорения, действующего на космический аппарат, то в других случаях следует учитывать конвекционные эффекты, не зависящие от ускорений. Укажем в качестве примера на термокапиллярную конвекцию, которая в некоторых случаях также может явиться причиной ухудшения структуры материала, получаемого в космосе.

Например, при зонной плавке, используемой для выращивания кристаллов, существует поверхность раздела между жидкостью и находящимся над ней насыщенным паром. Вдоль этой поверхности возможно изменение температуры, а поскольку от нее зависит поверхностное натяжение, то в этих условиях может возникнуть конвекционное течение. Когда перепад температуры начинает превышать некоторую критическую величину, в расплаве возникают конвекционные токи, носящие колебательный характер и ведущие к неравномерному поступлению примеси в зону кристаллизации. В результате примесь внутри кристалла будет распределена также неоднородно (явление полосчатости). По сравнению со свободной конвекцией, интенсивность которой зависит от уровня ускорений на космическом аппарате, преодоление термокапиллярных течений требует принятия других мер (ограничение величины перепадов температуры и т. д.).

Рассмотренные выше экспериментальные и теоретические исследования процессов переноса вещества в условиях, близких к невесомости, относились к расплавам. Однако в этих условиях и для газообразного состояния вещества процессы переноса могут иметь свои особенности. Приведем в качестве примера также эксперимент на станции «Скайлэб», в котором исследовалось выращивание кристаллов полупроводников — селенида и теллурида германия — из газовой фазы. Этот метод основан на том, что на горячем конце запаянной ампулы вещество, находящееся в газовой фазе (иодистый германий), реагирует с поверхностью твердого исходного материала, а затем под действием перепада температуры диффундирует в сторону холодного конца ампулы. Там, в более холодной зоне, происходят конденсация паров на затравочном кристалле и образование нужных кристаллов. Ожидалось, что скорость массопереноса продукта в газовой фазе будет определяться чисто диффузионными процессами. В земных условиях эта скорость значительно возрастает из-за конвекции. Этот эксперимент показал, что фактическая скорость переноса массы в космических условиях ниже наблюдаемой на Земле, но выше величины, рассчитанной в чисто диффузионном приближении.

Сходные результаты получены также в эксперименте, поставленном при совместном полете кораблей «Союз» и «Аполлон». Это расхождение в скоростях диффузионного переноса можно связать с особенностями химических реакций в газообразном состоянии, которые не учитываются в существующих методах расчета.

Механика жидкости. Рассматривая механику жидкости в невесомости как один из разделов теоретических основ космического производства, необходимо изучить вопросы поверхностного натяжения и смачивания, капиллярные эффекты, устойчивость форм жидкости и поведение содержащихся в ней включений — газовых пузырей, твердых частиц и т. д. Для качественного исследования этих вопросов удобно проводить на борту космических аппаратов эксперименты с использованием воды и водных растворов.

Серия подобных экспериментов демонстрационного характера была выполнена, например, на американской космической станции «Скайлэб». Методом киносъемки исследовались поведение свободно плавающих водяных сфер, их колебания, вызванные толчком шприца, развал сфер при вращении. Влияние поверхностного натяжения на затухание колебаний жидкости и на ее взаимодействие с твердой поверхностью изучалось путем добавления в жидкость мыльного раствора, что вело к изменению коэффициента поверхностного натяжения.

Другая экспериментальная установка, использованная на станции «Скайлэб» для проведения демонстрационных опытов по механике жидкостей, позволяла моделировать поведение плавающей зоны. В этой установке между двумя стержнями, которые можно было раздвигать и вращать независимо друг от друга, создавалась жидкая перемычка с разными коэффициентами поверхностного натяжения (за счет добавления в воду мыльного раствора). На этой установке исследовалась устойчивость жидкой зоны по отношению к вращению и перемещению стержней при изменении величины коэффициента поверхностного натяжения.

Следующая задача механики жидкости состоит в изучении поведения газовых и других включений. На важность этих исследований еще в 1969 г. указали советские ученые, проводившие на корабле «Союз-6» первые опыты по сварке и отметившие появление в сварных швах газовых включений. На Земле пузыри удаляются из жидкости под действием силы Архимеда, в космосе этого не происходит. В некоторых случаях такие включения могут приводить к ухудшению качества материала. Для управления динамикой газовых и других включений в жидкостях советские ученые предложили использовать ультразвуковые колебания жидкости и провели на борту летающей лаборатории в условиях кратковременной невесомости эксперименты, подтвердившие перспективность этого метода.

Учитывая важность исследований в области механики жидкости, соответствующие опыты были включены также и в программу экспериментов на станции «Салют-5». Цель этих экспериментов состояла в том, чтобы исследовать движение жидкости под действием одних только капиллярных сил и получить качественные данные о поведении пузырей в жидкости в условиях, близких к невесомости. Эксперименты были выполнены космонавтами Б. В. Вольтовым и В. М. Жолобовым с помощью приборов «Поток» и «Реакция».

Прибор «Поток» представлял собой прямоугольный параллелепипед, изготовленный из прозрачного оргстекла и содержащий внутри две полости, внутренняя поверхность одной из которых водой смачивается, а другой — нет. Сферические полости соединены между собой капиллярным и дренажным каналами, снабженными запорными вентилями. Перед началом эксперимента вентили открыли, и под действием сил поверхностного натяжения произошло перетекание водного раствора из первоначально заполненной жидкостью полости с несмачиваемыми стенками в полость, стенки которой смачивались водой. По дренажному каналу происходило выравнивание давления воздуха между полостями. При испытании прибора на летающей лаборатории процесс перетекания жидкости из одной полости в другую регистрировался с помощью киносъемки.

При испытании прибора на станции «Салют-5» исследовалась устойчивость газового пузыря в жидкости к механическим воздействиям. При интенсивном встряхивании прибора газовый пузырь, находившийся в заполненной жидкостью полости, разбился на большое количество (около 100) мелких пузырьков. В дальнейшем эти пузырьки постепенно сливались в один большой, но продолжительность этого процесса была значительной — около двух суток.

1 2 3 4 5 6 7 8 9 10 ... 14
Перейти на страницу:
Тут вы можете бесплатно читать книгу Космическая технология и производство - Сергей Гришин.
Комментарии