Большая Советская Энциклопедия (ТО) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Современный этап развития Т. характеризуется внедрением средств автоматизации в дело создания топографических карт. Практически приемлемые результаты уже получены для процессов считывания с помощью ЭВМ информации с аэроснимков и её записи в цифровой форме, автоматизированного преобразования последней при составлении оригиналов карт (включая трансформирование из центральной проекции в ортогональную, рисовку рельефа в горизонталях, дешифрирование части объектов) на различных приборах и гравировании (или вычерчивании) оригиналов для издания. Наряду с изготовлением карт средства автоматизации применимы в Т. для построения так называемых цифровых моделей местности, то есть формализованных её моделей, представленных координатами и характеристиками точек местности, записанными цифровым кодом (например, на магнитной ленте) для последующей обработки на ЭВМ. Эти модели служат для: 1) дополнения карты данными, не выражающимися ни при графическом, ни при фотографическом воспроизведении местности (см. Фотокарты ), но весьма важными при ряде изысканий и в первую очередь в целях землеустройства и городского строительства; 2) выделения содержащейся на картах информации (объектов того или иного вида, типов территории, комплекса сведений, существенных при решении таких инженерных задач, как выбор трасс каналов, дорог и трубопроводов, участков под водохранилища, аэродромы, лесопосадки и т.п.). Цифровая форма даёт также возможность кодирования и поиска необходимых материалов картографического значения при их сосредоточении в справочно-информационных фондах. Автоматизация дистанционных методов получения топографической информации позволила приступить к съёмке поверхности Луны и части планет с изготовлением блоков обзорно-топографических карт на большие площади, отдельных листов собственно топографических карт на избранные участки и крупномасштабных планов на местность вокруг пунктов посадки межпланетных автоматических станций и космических кораблей, а также по трассам луноходов.
Лит.: 50 лет советской геодезии и картографии, М., 1967; Альбом образцов изображения рельефа на топографических картах, М., 1968; Подобедов Н. С., Полевая картография, М., 1970; Салищев К. А., Картография, 2 изд., М., 1971; Куприн А. М., Говорухин А. М., Гамезо М. В., Справочник по военной топографии, М., 1973: Картография с основами топографии, под ред. А. В. Гедымина, ч. 1—2, М., 1973; Соколова Н. А.. Фотограмметрические методы топографического картографирования, в кн.: Итоги науки и техники. Геодезия и аэросъёмка, т. 8, М., 1973; Лобанов А. Н., Аэрофототопография, М., 1971; Материалы Всесоюзной конференции по проблемам крупномасштабных топографических съёмок (Москва, 1973), М., 1974; Господ и нов Г. В., Сорокин В. Н., Топография, 2 изд., М., 1974; Гольдман Л. М., Совершенствование содержания топографических карт и планов, предназначенных для мелиорации земель, «Геодезия и картография», 1974, № 4; Салищев К. А., Картоведение, М., 1976: Поспелов Е. М., Картографическая изученность зарубежных стран, М., 1975.
Л.М. Гольдман.
Топография барическая
Топография бари'ческая , распределение высот или геопотенциалов той или иной изобарической поверхности над уровнем моря (абсолютная Т. б. ) или над уровнем другой нижележащей изобарической поверхности (относительная Т. б.).
Топография военная
Топогра'фия вое'нная, см. Военная топография .
Топозеро
Топо'зеро, озеро в северной части Карельской АССР. Площадь 986 км 2 . Расположено на высоте 109 м . Вытянуто с С.-С.-З. на Ю.-Ю.-В. Берега, особенно восточный, изрезанные; на Т. много островов, общая площадь 63 км 2 . Питание преимущественно снеговое. Высшие уровни в июне, низшие в апреле. Замерзает в конце октября — ноябре, вскрывается в мае. С созданием Кумской ГЭС в 1966 стало частью Кумского водохранилища . Лесосплав. Лов рыбы (ряпушка, хариус, сиг, корюшка и др.).
Топологическая психология
Топологи'ческая психоло'гия, психологическая концепция немецко-американского психолога К. Левина, представляющая собой применение понятий топологии к разработанной им теории психологического «поля». Развита в 1930-х гг. Включает как собственно математические, так и психологические понятия, с помощью которых описываются статические и динамические особенности психологического поля. См. ст. Левин К. и литературу при ней.
Топологическое пространство
Топологи'ческое простра'нство, множество, состоящее из элементов любой природы, в котором тем или иным способом определены предельные соотношения. Предельные соотношения, наличие которых превращает данное множество Х в топологическое пространство, состоят в том, что для каждого подмножества А множества Х определено его замыкание, то есть множество [А ], состоящее из всех элементов множества А и из предельных точек этого множества (если какое-либо множество является Т.п., то его элементы, независимо от их действительной природы, принято называть точками данного Т.п.). «Ввести в данное множество Х топологию», или «превратить данное множество Х в Т. п.», — это значит тем или иным способом указать замыкание [А ] для каждого подмножества А множества Х . Точки множества [А] называются точками прикосновения множества А .
Каждое метрическое пространство мо жет быть естественным образом превращено в Т. п., поэтому говорят (допуская некоторую неточность), что метрическое пространство является частным случаем топологического. В частности, числовая прямая, евклидово пространство любого числа измерений, различные функциональные пространства могут служить примерами метрических и, следовательно, топологических пространств. Существует много способов вводить в данное множество Х топологию, то есть превращать его в Т. п.; например, в случае метрических пространств топология вводится посредством вспомогательного понятия расстояния. В очень многих случаях топология в данное множество Х вводится посредством окрестностей: для каждого элемента (для каждой «точки») множества Х некоторые подмножества множества Х выделяются в качестве окрестностей данной точки. В предположении, что окрестности определены, точка х объявляется точкой прикосновения множества А, если каждая окрестность этой точки содержит хотя бы одну точку множества А. См. также ст. Топология и литературу при ней.
Топология
Тополо'гия (от греч. tо'pos — место и ¼логия ) — часть геометрии, посвященная изучению феномена непрерывности (выражающегося, например, в понятии предела). Разнообразие проявлений непрерывности в математике и широкий спектр различных подходов к её изучению привели к распадению единой Т. на ряд отделов («общая Т.», «алгебраическая Т.» и др.), отличающихся друг от друга по предмету и методу изучения и фактически весьма мало между собой связанных.
I. Общая топология
Часть Т., ориентированная на аксиоматическое изучение непрерывности, называется общей Т. Наряду с алгеброй общая Т. составляет основу современного теоретико-множественного метода в математике.
Аксиоматически непрерывность можно определить многими (вообще говоря, неравносильными) способами. Общепринята аксиоматика, основывающаяся на понятии открытого множества. Топологической структурой, или топологией, на множестве Х называют такое семейство его подмножеств, называемых открытыми множествами, что: 1) пустое множество Æ и всё Х открыты; 2) объединение любого числа и пересечение конечного числа открытых множеств открыто. Множество, на котором задана топологическая структура, называют топологическим пространством . В топологическом пространстве Х можно определить все основные понятия элементарного анализа, связанные с непрерывностью. Например, окрестностью точки x Î X называют произвольное открытое множество, содержащее эту точку; множество A Ì X называют замкнутым, если его дополнение Х А открыто; замыканием множества А называют наименьшее замкнутое множество, содержащее A ; если это замыкание совпадает с X , то А называют всюду плотным в Х и т.д.