Большая Советская Энциклопедия (ТО) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Если Х — топологическое пространство, а Y — произвольное множество и если задано отображение p : X ® Y пространства Х на множество Y (например, если Y является фактормножеством Х по некоторому отношению эквивалентности, а p представляет собой естественную проекцию, сопоставляющую с каждым элементом х Î Х его класс эквивалентности), то можно ставить вопрос о введении в Y топологической структуры, относительно которой отображение p непрерывно. Наиболее «богатую» (открытыми множествами) такую структуру получают, полагая открытыми множествами в Y все те множества V Ì Y, для которых множество f‑1 (V ) Ì Х открыто в X . Снабженное этой топологической структурой множество Y называется факторпространством топологического пространства Х (по отношению к p ). Оно обладает тем свойством, что произвольное отображение f : Y ® Z тогда и только тогда непрерывно, когда непрерывно отображение : X ® Z. Непрерывное отображение p : X ® Y называется факторным, если топологическое пространство Y является по отношению к p факторпространством топологического пространства X . Непрерывное отображение p : X ® Y называется открытым, если для любого открытого множества U Ì Х множество p(U) открыто в Y , и замкнутым, если для любого замкнутого множества F Ì Х множество p(F) замкнуто в Y . Как открытые, так и замкнутые непрерывные отображения f : Х ® Y , для которых f(X) = Y , являются факторными.
Пусть Х — топологическое пространство, А — его подпространство и f : A ® Y — непрерывное отображение. Предполагая топологические пространства Х и Y непересекающимися, введём в их объединении Х È Y топологическую структуру, считая открытыми множествами объединения открытых множеств из Х и Y . Далее, введём в пространстве Х È Y наименьшее отношение эквивалентности, в котором a ~ f(a) для любой точки a Î А . Соответствующее факторпространство обозначается символом X È f Y , и о нём говорят, что оно получено приклеиванием топологического пространства Х к топологическому пространству Y по А посредством непрерывного отображения f . Эта простая и наглядная операция оказывается очень важной, так как позволяет получать из сравнительно простых топологических пространств более сложные. Если Y состоит из одной точки, то пространство Х È f Y обозначается символом Х/А и о нём говорят, что оно получено из Х стягиванием А в точку. Например, если Х — диск, а А — его граничная окружность, то Х/А гомеоморфно сфере.
2. Равномерная топология
Часть Т., изучающая аксиоматическое понятие равномерной непрерывности, называется равномерной Т. Известное из анализа определение равномерной непрерывности числовых функций непосредственно переносится на отображения любых метрических пространств. Поэтому аксиоматику равномерной непрерывности обычно получают, отталкиваясь от метрических пространств. Подробно исследованы два аксиоматических подхода к равномерной непрерывности, основанных соответственно на понятиях близости и окружения диагонали.
Подмножества А и В метрических пространства Х называются близкими (обозначение A dB ), если для любого e > 0 существуют точки a Î А и b Î В, расстояние между которыми < e. Принимая основные свойства этого отношения за аксиомы, приходят к следующему определению: (отделимой) структурой близости на множестве Х называется такое отношение d на множестве всех его подмножеств, что: 1) ÆX (символом обозначается отрицание отношения d; 2) AB 1 и AB2 Û A (B 1 U B2 ); 3) {x }{y } Û x ¹ y ; 4) если АВ , то существует такое множество С В , что А (Х С ). Множество, в котором задана структура близости, называется пространством близости. Отображение пространства близости Х в пространство близости Y называется близостно непрерывным, если образы близких в Х множеств близки в Y . Пространства близости Х и Y называются близостно гомеоморфными (или эквиморфными), если существует взаимно однозначное близостно непрерывное отображение X ® Y , обратное к которому также является близостно непрерывным (такое близостно непрерывное отображение называется эквиморфизмом). В равномерной Т. эквиморфные пространства близости рассматриваются как одинаковые. Подобно метрическим пространствам, любое пространство близости можно превратить в (хаусдорфово) топологическое пространство, считая подмножество u Ì x открытым, если {x }(X U ) для любой точки х Î U . При этом близостно непрерывные отображения окажутся непрерывными отображениями. Класс топологических пространств, получающихся описанным образом из пространств близости, совпадает с классом вполне регулярных топологических пространств. Для любого вполне регулярного пространства Х все структуры близости на X , порождающие его топологическую структуру, находятся во взаимно однозначном соответствии с так называемыми компактификациями (в другой терминологии — би-компактными расширениями) вХ — компактными хаусдорфовыми топологическими пространствами, содержащими Х в качестве всюду плотного пространства. Структура близости d, соответствующая расширению вХ, характеризуется тем, что А dВ тогда и только тогда, когда замыкания множеств А и В пересекаются в bX . В частности, на любом компактном хаусдорфовом топологическом пространстве Х существует единственная структура близости, порождающая его топологическую структуру.
Другой подход основан на том, что равномерную непрерывность в метрическом пространстве Х можно определить в терминах отношения «точки х и у находятся на расстоянии, не большем e». С общей точки зрения, отношение на Х есть не что иное как произвольное подмножество U прямого произведения Х ´ X . Отношение «тождество» является с этой точки зрения диагональю D Ì Х ´ X , то есть множеством точек вида (х, х ), х Î X. Для любого отношения U определено обратное отношение U—1 = {(х, у ); (у, х ) Î U } и для любых двух отношений U и V определена их композиция U × V = {(х, у ); существует z Î Х такое, что (х, z ) Î U , (z, y ) Î V }. Семейство отношений {U } называется (отделимой) равномерной структурой на Х (а отношения U называется окружениями диагонали), если: 1) пересечение любых двух окружений диагонали содержит окружение диагонали; 2) каждое окружение диагонали содержит D, и пересечение всех окружений диагонали совпадает с D; 3) вместе с U окружением диагонали является и U—1 ; 4) для любого окружения диагонали U существует такое окружение диагонали W , что W o W Ì U . Множество, наделённое равномерной структурой, называется равномерным пространством. Отображение f : X ® Y равномерного пространства Х в равномерное пространство Y называется равномерно непрерывным, если прообраз при отображении f ´ f : Х ´ Х ® Y ´ Y любого окружения диагонали V Ì Y ´ Y содержит некоторое окружение диагонали из Х ´ X . Равномерные пространства Х и Y называются равномерно гомеоморфными, если существует взаимно однозначное равномерно непрерывное отображение Х ® Y , обратное к которому также является равномерно непрерывным отображением.