Эйнштейн. Его жизнь и его Вселенная - Уолтер Айзексон
Шрифт:
Интервал:
Закладка:
До тех пор научный успех Эйнштейна основывался на его уникальном чутье, позволявшем ему ощущать основные физические законы природы, а найти лучшее математического описание этих законов казалось ему менее сложным и интересным делом, и он оставлял это другим. Например, подобную задачу в отношении специальной теории относительности выполнил его цюрихский коллега Минковский.
Но к 1912 году Эйнштейн пришел к выводу, что математика может быть полезным инструментом не только для описания законов природы, но и для их открытия. Математика была сценарием, по которому действует природа. “Основная идея общей теории относительности состоит в том, что гравитация возникает из кривизны пространства – времени, – говорит физик Джеймс Хартл. – Гравитация – это и есть геометрия”9.
“Сейчас я работаю исключительно над проблемами гравитации, и мне кажется, что с помощью здешнего друга-математика я смогу преодолеть все трудности, – писал Эйнштейн физику Арнольду Зоммерфельду, – у меня возникло огромное уважение к математике, наиболее сложные разделы которой я до сегодняшнего дня по своему невежеству считал чистым излишеством!”10
После разговора с Эйнштейном Гроссман отправился домой, чтобы подумать о проблеме, и, когда просмотрел соответствующую литературу, вернулся к Эйнштейну и порекомендовал ему неевклидову геометрию[48], которая была разработана Бернгардом Риманом11.
Риман (1826–1866) был вундеркиндом, который в возрасте четырнадцати лет изобрел вечный календарь и подарил его родителям. Он продолжил учебу в крупном германском центре математической науки – Геттингене – под руководством Карла Фридриха Гаусса, первым заинтересовавшегося геометрией искривленных поверхностей. Эту тему Гаусс предложил Риману в качестве диссертационной, и результаты этой работы впоследствии изменили не только геометрию, но и физику.
Геометрия Евклида описывает плоские поверхности, а на искривленных поверхностях она перестает быть справедливой. Например, сумма углов треугольника, нарисованного на плоской странице, равна 180°. Но посмотрите на глобус и представьте себе треугольник, образованный экватором в качестве основания, меридианом, проходящим от экватора к Северному полюсу через Лондон (долгота 0°) в качестве одной боковой стороны, и меридианом, проходящим от экватора к Северному полюсу через Новый Орлеан (долгота 90°), в качестве второй боковой стороны. Если вы посмотрите на этот треугольник, вы увидите, что все три его угла прямые, что, конечно, невозможно в плоском мире Евклида.
Гаусс и другие математики разработали различные типы геометрий, которые описывали поверхность сферы и других криволинейных поверхностей. Риман пошел дальше: он нашел способ описания поверхности независимо от того, как изменяется ее геометрия, – даже если при переходе из одной точки в другую поверхность превращалась из сферической в плоскую и потом в гиперболическую. А потом он пошел еще дальше и не ограничился исследованием кривизны двумерной поверхности, а, опираясь на работу Гаусса, нашел, как математически можно описать кривизну трехмерного и даже четырехмерного пространства.
Это сложная для понимания математическая концепция. Мы еще можем представить себе кривую линию или поверхность, но трудно представить искривленное трехмерное пространство и еще труднее – искривленное четырехмерное пространство. Но для математиков обобщение понятия кривизны на разные измерения является несложным делом – по крайней мере выполнимым. Оно выполняется с помощью введения метрики, которая определяет способ расчета расстояния между двумя точками в пространстве.
На плоской поверхности любой старшеклассник, изучавший алгебру, зная всего две нормальные координаты X и Y, с помощью старины Пифагора может вычислить расстояние между точками.
Но представьте себе плоскую карту (карту мира, например), которая представляет собой проекции полусфер земного шара на плоскость. Местность вблизи полюсов растянута, и измерение расстояний становится более сложным. Если взять две пары точек с одинаковыми расстояниями между ними, но расположенные в разных местах карты, фактические расстояния между двумя соответствующими точками в Гренландии и вблизи экватора нужно вычислять по-разному. Риман разработал способы, позволяющие математически вычислить расстояние между точками в пространстве независимо от того, каким образом оно искривлено и искажено12.
Для этого он использовал характеристику, называемую тензором. В евклидовой геометрии используются векторы – характеристики, которые имеют как величину, так и направление (например, и скорость, и сила являются векторами), и таким образом, для их описания требуется больше одного простого числа. В неевклидовой геометрии, где пространство искривлено, для его характеристики нам нужен какой-то более сложный геометрический объект, который определяется с помощью упорядоченного набора (матрицы) большего количества чисел (компонентов). Эти объекты называются тензорами.
Метрический тензор является математическим инструментом, который показывает, как рассчитать расстояние между точками в данном пространстве[49]. Для двумерных карт метрический тензор имеет три компоненты. Для трехмерного пространства он имеет шесть независимых компонент. А когда вы переходите к нашему знаменитому четырехмерному пространству, называемому пространством – временем, метрический тензор определяется уже десятью независимыми компонентами.
Риман развил концепцию метрического тензора, обычно обозначаемого символом gμν (произносится как джи-мю-ню). Он имеет шестнадцать компонентов, десять из которых независимы друг от друга и могут быть использованы для определения и описания расстояний в искривленном четырехмерном пространстве – времени13.
В работе по обобщению теории относительности Эйнштейн с Гроссманом стали использовать и тензор Римана, и другие тензоры, введенные итальянскими математиками Грегорио Риччи-Курбастро и Туллио Леви-Чивитой. Полезное свойство этих тензоров состоит в том, что они общековариантны, и это свойство оказалось важным, поскольку их общековариантность означает, что отношения между их компонентами остаются постоянными, даже когда происходят произвольные изменения или вращения системы координат в пространстве – времени. Другими словами, компоненты этих тензоров могут подвергаться множеству преобразований, связанных с изменениями системы отсчета, но основные закономерности, определяющие соотношения компонент тензора, должны оставаться неизменными14.