Категории
Самые читаемые
PochitayKnigi » Документальные книги » Биографии и Мемуары » Мои воспоминания - Алексей Николаевич Крылов

Мои воспоминания - Алексей Николаевич Крылов

Читать онлайн Мои воспоминания - Алексей Николаевич Крылов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 74 75 76 77 78 79 80 81 82 ... 127
Перейти на страницу:
и приложениям закона тяготения, им открытого, к изучению движения небесных тел.

В течение XVIII в. анализ бесконечно малых доводится до высокой степени совершенства; на его основе развивается теоретическая механика, которая сперва, по примеру Ньютона, прилагается главным образом к изучению движения небесных тел и отчасти к баллистике.

С середины XVIII в. механика начинает прилагаться к решению вопросов технических не только из области статики, которая была создана Архимедом, но и динамики.

С XIX в технические приложения механики как в области статики, так и динамики все более и более проникают в технику и все более и более ее охватывают.

5. Но и математика не стоит на месте, она продолжает развиваться в разных направлениях, которые можно характеризовать так:

а) развитие вычислительных, в обширном смысле этого слова, процессов;

б) изучение свойств функций, возникающих при вычислениях, установление строгости и строгое обоснование самих вычислительных процессов;

в) общее изучение свойств чисел;

г) изучение свойств пространства и обобщения их;

д) изучение специально алгебраических процессов и свойств алгебраических уравнений;

е) усовершенствование способов численных вычислений, приближенных методов их и приложения этих методов.

Каждая из этих областей разрослась так, что литература по каждой из них в отдельности составляет целую библиотеку из многих сотен, многих тысяч, а иногда и многих десятков тысяч журнальных статей, руководств и трактатов.

Теоретическая механика также разрослась не в меньшей степени; в нее входят:

а) чисто теоретическая или так называемая «рациональная механика»;

б) «небесная механика», т. е. приложение механики к изучению движения небесных тел;

в) так называемая «прикладная механика», т. е. приложение механики к вопросам изучения механизмов и построения их;

г) теория упругости и сопротивления материалов, изучающая вместе со «строительной механикой» свойства материалов, расчеты разного рода конструкций и возникающих в них напряжений;

д) наконец, сюда же надо отнести математическую физику с ее подразделениями, каждое из которых имеет обширные приложения в практике и технике.

Литература по каждому из этих отделов громадна и, можно сказать, практически необозрима.

6. При нашем беглом обзоре развития математики мы обратили внимание на то, что чистый математик, которого мы будем называть геометр, требует от своей науки – математики – прежде всего безукоризненной логичности и строгости суждений.

Одно время в конце XVIII в. математика как бы отчасти сбилась с этого пути, но уже в первой четверти XIX в. была на него вновь направлена Гауссом, Абелем и Коши; начиная же с последней четверти XIX в., по почину Вейерштрасса, в математику вновь вводится, можно сказать, «евклидова строгость», а с нею отвлеченность.

Математика сама создает те идеальные образы, над которыми она оперирует, не только не прибегая при этом к наглядности, но тщательно изгоняя из своих рассуждений и доказательств всякую наглядность, всякое свидетельство чувств. Геометр не только не верит своим чувствам, но не признает самого их существования, он есть декартово «мыслящее существо». Геометру нет дела до того, есть ли в природе такие предметы, к которым его образы относятся, для него важно, что он их создал в своем уме, приписал им определения, аксиомы и допущения, после чего он с полною логичностью и строгостью развивает следствия этих аксиом и допущений, не вводя при этом никаких других аксиом и никаких новых допущений, – до остального ему дела нет.

7. Ясно, что практик, техник, каковым и должен быть всякий инженер, смотрит на дело совершенно иначе. Он должен развивать не только свой ум, но и свои чувства так, чтобы они его не обманывали; он должен не только уметь смотреть, но и видеть; он должен уметь не только слушать, но и слышать, не только нюхать, но и чуять; свои же умозаключения он должен сводить не к робкому декартову «мыслю – значит существую», а к твердому, практическому: «я это вижу; слышу, осязаю, чую – значит это так и есть».

Для геометра математика сама по себе есть конечная цель, для инженера – это есть средство, это есть инструмент такой же, как штангель, зубило, ручник, напильник для слесаря или полусаженок, топор и пила для плотника.

Инженер должен по своей специальности уметь владеть своим инструментом, но он вовсе не должен уметь его делать; плотник не должен уметь выковать или наварить топор, он должен уметь отличить хороший топор от плохого; слесарь не должен уметь сам насекать напильник, но должен выбрать тот напильник, который ему надо.

Так вот геометра, который создает новые математические выводы, можно уподобить некоему воображаемому универсальному инструментальщику, который готовит на склад инструмент на всякую потребу; он делает все, начиная от кувалды и кончая тончайшим микроскопом и точнейшим хронометром. Геометр создает методы решения вопросов, не только возникающих вследствие современных надобностей, но и для будущих, которые возникнут, может быть, завтра, может быть, через тысячу лет.

Вообразите же теперь инженера, вошедшего в этот склад и желающего в нем найти нужный ему инструмент. Он прежде всего будет поражен огромным, подавляющим количеством всего накопленного за 2500 лет материала, его изумительным разнообразием. При более внимательном рассмотрении он заметит среди массы других вещей, кажущихся простыми, и некоторые сложнейшие аппараты непонятного ему назначения, но изумительные по отделке их многочисленных деталей, по тщательной их пригонке, да к тому же оправленные в серебро и золото.

Среди аппаратов новейшего изготовления он увидит множество приборов, служащих для самой точной, самой тщательной отделки изделий, т. е. множество разных шаберов и шлифовальных станков. Заметит он и много устарелого, вышедшего из употребления, местами будет попадаться и просто разный хлам.

Но ведь инженер пришел сюда не затем, чтобы любоваться неисчислимыми сокровищами: не золото и серебро ему нужны, а быстрорежущая сталь, ему нужен не столько шабер, сколько грубая обдирка, грубое надежное зубило, ведь не шабером же будет он выбирать шпунт у ахтерштевня. Присмотревшись еще ближе, он среди этого бесчисленного разнообразия заметит ряд, остающихся почти неизменными в течение 150 лет, к тому же кладовщик ему подскажет, что их так часто требуют, что и не напасешься, а за остальными заходят лишь знатоки – мастера и любители.

Не отнестись ли ему с доверием к этим, еще издавна великими мастерами подобранным ассортиментам, и не следует ли ему воспользоваться этими готовыми и десятилетиями, если не столетиями испытанными инструментами и научиться ими правильно и искусно владеть, а затем уже, когда он сам станет знатоком и мастером, порыться и в остальных сокровищах и попытаться извлечь из них именно то, что ему надо, не брезгуя и шаберами.

Так вот эти систематические ассортименты – это те курсы, которые вам читают, и те руководства, изучение которых вам рекомендуют, а кладовщики и инструментальщики – это те профессора и руководители, которые вас обучают. Может быть, они сами и не инженеры, но зато они хорошо знают и хорошо владеют вверенным им инструментом, склад свой они изучили и знают, где и что в нем можно найти.

8. Однако, чтобы правильно выбрать готовый или правильно подобрать свой ассортимент инструментов, надо ближе разобраться в том деле, для которого он нужен. Для этого опять-таки бегло и в общих чертах проследим развитие кораблестроения.

О судостроении древних культурных народов почти не сохранилось никаких данных, по которым инженер мог бы составить ясное представление о судах, их устройстве, способах их проектирования и постройки. Рассказы некоторых историков по большей части свидетельствуют об их технической безграмотности и легковерии. Между тем начало судостроения восходит задолго до всякой письменности и всякой истории. Чертежей тогда, по-видимому, не было, или они изготовлялись на покрытых воском дощечках или временных деревянных помостах вроде тех, которыми и теперь пользуются кустари при постройке речных барж; ясно, что от этого ничего не сохранилось, да и не могло сохраниться.

Здесь, видимо, все шло преимущественно чисто практически, передаваясь от отца к сыну, от мастера к ученику, а не как наука.

Даже основной закон о равновесии плавающих тел, данный Архимедом за 250 лет до нашей эры, был впервые применен к делу судостроения лишь в 1660-х годах Антонием Дином в Англии, когда в ней уже был Ньютон, математический гений которого почитается одинаковым с гением Архимеда.

Но здесь приходится заметить, что, судя по найденному около Туниса, вблизи того места, где был древний Карфаген, затонувшему судну, груженному вчерне отделанными статуями, на котором сохранилась, копия того документа, что теперь называют «чартер партией», видно, что и тогда, т. е. примерно 2000 лет тому назад, этот документ составлялся почти в тех же выражениях, как и теперь, также предусматривались случаи «непреодолимых сил», да притом еще и шкипер клялся «Зевсом и всеми богами Олимпа хранить условия чартера свято и нерушимо и добавочного груза на свое судно не принимать». Значит, практика мореплавания и тогда сознавала значение надводного борта, хотя едва ли знала закон Архимеда.

Первые руководства по «Теории корабля» появились в 1740-х годах. В них впервые было установлено учение о остойчивости корабля.

В начале 1800-х

1 ... 74 75 76 77 78 79 80 81 82 ... 127
Перейти на страницу:
Тут вы можете бесплатно читать книгу Мои воспоминания - Алексей Николаевич Крылов.
Комментарии