Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Прочая научная литература » Концепции современного естествознания: конспект лекций - С. Филин

Концепции современного естествознания: конспект лекций - С. Филин

Читать онлайн Концепции современного естествознания: конспект лекций - С. Филин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 4 5 6 7 8 9 10 11 12 ... 33
Перейти на страницу:

Дальнейшее развитие биофизики связано с:

1) изучением работ Луиджи Гальвани. В своих работах он выдвигал существование «животного электричества» (более подробно о нем будет рассказано ниже);

2) изучением работ Г. Гельмгольца, а также с изучением и развитием акустики и оптики;

3) изучением механики и энергетики живых организмов;

4) изучением работ П. П. Лазарева и работ Ю. Бернштейна, а также с изучением ионной и мембранной теории возбуждения.

Биофизика изучает целостные системы, не разлагая их на составные части. Если же будут выделяться составные части, то в процессе такого «выделения» частного из целого будут утрачены важные для дальнейшего нормального существования свойства целостной системы. Это прежде всего негативно отразится на самой биофизической науке. Полимеры нормально функционируют исключительно в условиях ненарушенной, целостной системы. Поэтому биофизики должны изобрести новые приемы и методы исследования. Главной особенностью таких методов является то, что они изучают полимеры именно в тех условиях, в которых они и живут.

Если были нарушены важные для дальнейшего нормального существования свойства и процессы клетки, то, соответственно, изменяются и ее физические и химические параметры. При определенных воздействиях клетка может потерять ряд своих способностей (например, способность к поляризации), хотя внешний вид клеток может оставаться неизменным.

Но клетка может не только потерять свои способности, но и приобрести так называемые артефакты. Артефакт для биофизики – это вновь образованные структуры и соединения. Главная особенность артефактов заключается в том, что их нет в неповрежденных, т. е. в целых клетках.

С появлением микроскопов, а затем с использованием электронных микроскопов значительно расширились границы исследования биологии, химии, биофизики и многих других наук. Ученые, используя методы электронной микроскопии, пытаются вскрыть детали тонкого строения молекулярного вещества. При этом они могут наткнуться и на артефакты. К чему это может привести? А вот к чему:

1) если артефакт по внешним признакам неотличим, то это может привести к ошибочным результатам. Помимо «внешнего сходства», здесь также играют заметную роль такие факторы, как наличие достаточных знаний у ученого и проявление им в процессе исследования клетки предельного внимания;

2) артефакт может быть обнаружен, если ученый обладает достаточным объемом знаний и информации, а также проявил максимальное внимание.

Перед биофизической наукой стоит ряд сложных теоретических и практических задач. Эти задачи входят в компетенцию биофизики, а другие науки могут оказывать ей помощь:

1) вопрос размена энергии в биологическом субстрате;

2) исследование роли субмикроскопических и физико-химических свойств и структур в жизнедеятельности клеток и тканей;

3) возникновение возбуждения и происхождение биоэлектрических потенциалов;

4) вопросы авторегулирования физико-химических процессов в живых организмах.

Значение четвертой задачи, т. е. задачи, касающейся вопросов авторегулирования физико-химических процессов в живых организмах, состоит в том, что надмолекулярные структуры, которые отсутствуют в живых организмах, были выявлены в гистологических препаратах. Достоверно установлено, что живым клеткам присущи следующие свойства:

1) наличие электрического потенциала между непосредственно самой клеткой и окружающей ее средой;

2) живая клетка удерживает ионный градиент по калию и натрию между клеткой и окружающей ее средой;

3) способность поляризировать электрический ток.

Эти свойства присущи только живым клеткам. Одну из самых заметных ролей в истории появления и развития биофизики сыграл выдающийся ученый Луиджи Гальвани.

2. Луиджи Гальвани, его теория. Спор с Вольтом

Луиджи Гальвани (1737–1798 гг.) – выдающийся ученый, он занимался анатомией и физиологией. Гальвани стал одним из основателей учения об электричестве. Луиджи Гальвани также известен тем, что он первый обратил внимание на то, что электрические явления возникают при мышечном сокращении (этот эффект, а точнее, явление, был назван «животным электричеством»).

Луиджи Гальвани родился 9 сентября 1737 г. в Италии, в г. Болонье. Он не планировал заниматься науками, а искал уединения и хотел беседовать в своих молитвах с Творцом, Богом. Поэтому Гальвани сначала готовился постричься в монахи, но уйти жить в монастырь у него не получилось. Скорее всего, Гальвани понял, что аскетический образ жизни не для него, и мировая история приобрела еще одного выдающегося ученого.

Гальвани поступил в местный университет, после окончания которого в 1759 г. начал готовить свою научную диссертацию. На свою научную работу Луиджи Гальвани тратит целые годы. В 1762 г. Гальвани с успехом защищает свою диссертацию, которая была названа «О костях». Успех Гальвани был настолько огромен, что он сразу же занял пост главы кафедры анатомии университета, который он сравнительно недавно окончил. Таким образом, была по достоинству оценена работа молодого ученого.

Параллельно с научной работой Луиджи Гальвани занимался и практикой: хирургией и акушерством. Через 12 лет, в 1774 г., Гальвани, проводя опыт над лягушкой, открывает «животное электричество». Луиджи Гальвани заинтересовался этим явлением как физиолог. Его заинтересовала способность мертвого препарата проявлять себя как живой материал. Он менял положение металлического провода в теле лягушки, менял источники тока и множество других параметров.

Проводя такой опыт, Луиджи Гальвани хотел использовать в качестве источника тока природное электричество, но погода стояла ясная и на небе не было ни облачка. Ученый чисто случайно прижал электроды, которые были воткнуты в спинной мозг лягушки, к железной решетке, на которой и лежала лягушка. Луиджи Гальвани был очень сильно удивлен, когда увидел, что появились такие же сокращения, как и во время опытов, которые проводились во время грозы.

Еще больше Луиджи Гальвани был удивлен, когда выяснил, что мышцы сокращаются и в то время, когда внешний источник тока отсутствует. Оказалось, что мышцы начинают сокращаться и при простом наложении на них двух пластин разных металлов, соединенных проводником.

Этими опытами физиолога Луиджи Гальвани заинтересовался другой известный ученый – физик Алессандро Вольта. Вольта высказал предположение, что электричество заключается в тех двух пластинах разных металлов, которые использовал Гальвани. И электричество возникает при соединении этих пластин проводником. Таким образом, физик Алессандро Вольта стал оппонентом в научном споре физиолога Луиджи Гальвани.

Так начался величайший спор между двумя учеными. Алессандро Вольта настаивал на том, что источник электричества – это металлы, а другой настаивал на том, что источник тока – это животные. Оба ученых проводили эксперименты в подтверждение своей теории. Луиджи Гальвани, как ему показалось, нашел неопровержимые доказательства своей точки зрения, которая состоит из двух элементов:

1) доказал, что электричество возникает и без участия металлов;

2) сняв кожный покров с нерва лапки лягушки, Луиджи Гальвани поднес его к мышцам. Мышца начала сокращаться.

Алессандро Вольта, однако, не успокоился и не отступился.

Он тоже привел весьма и весьма убедительные доказательства в пользу своей точки зрения.

Хотя и Гальвани, и Вольта считали, что в споре прав только один из них, по прошествии продолжительного периода времени стало ясно, что обе точки зрения имеют право на существование.

Алессандро Вольта был соотечественником Луиджи Гальвани, так как оба они родились в Италии, но в разных городах. Важнейшим его вкладом в развитие науки было изобретение им принципиально нового источника постоянного тока. В 1800 г. Алессандро Вольта создал так называемый вольтов столб. Это был первый химический источник электричества. Имя Алессандро Вольта было увековечено тем, что в честь него назвали единицу разности потенциалов электрического поля (вольт). Свое заслуженное признание Вольта получил в XIX в. В 1800 г. Наполеон Бонапарт открывает университет в Павии и Вольта назначают профессором кафедры экспериментальной физики.

Также Вольта был введен в комиссию института Франции; через несколько лет он получает золотую медаль, а также премию первого консула; его приглашают работать в Петербург. Папа римский назначает ему пожизненную пенсию, а во Франции он получает орден Почетного легиона.

Позже Вольта переезжает жить и работать в Австрию, в университет города Павия. К этому времени ученый был уже удостоен дворянского титула графа.

Австрийские власти так берегли Вольта, что разрешили ему работать, не посещая службу, а также подтвердили его право на пожизненную пенсию. В Павии Вольта был деканом философского факультета.

1 ... 4 5 6 7 8 9 10 11 12 ... 33
Перейти на страницу:
Тут вы можете бесплатно читать книгу Концепции современного естествознания: конспект лекций - С. Филин.
Комментарии