Изучай Haskell во имя добра! - Миран Липовача
Шрифт:
Интервал:
Закладка:
Если экземпляры классов Functor и Monad для типа подчиняются законам функторов и монад, между этими двумя нет никакой разницы (и все монады, которые мы до сих пор встречали, подчиняются обоим). Это примерно как функции pure и return, делающие одно и то же, – только одна имеет ограничение класса Applicative, тогда как другая имеет ограничение Monad.
Давайте опробуем функцию liftM:
ghci> liftM (*3) (Just 8)
Just 24
ghci> fmap (*3) (Just 8)
Just 24
ghci> runWriter $ liftM not $ Writer (True, "горох")
(False,"горох")
ghci> runWriter $ fmap not $ Writer (True, "горох")
(False,"горох")
ghci> runState (liftM (+100) pop) [1,2,3,4]
(101,[2,3,4])
ghci> runState (fmap (+100) pop) [1,2,3,4]
(101,[2,3,4])
Вы уже довольно хорошо знаете, как функция fmap работает со значениями типа Maybe. И функция liftM делает то же самое. При использовании со значениями типа Writer функция отображает первый компонент кортежа, который является результатом. Выполнение функций fmap или liftM с вычислением, имеющим состояние, даёт в результате другое вычисление с состоянием, но его окончательный результат изменяется добавленной функцией. Если бы мы не отобразили функцию pop с помощью (+100) перед тем, как выполнить её, она бы вернула (1, [2,3,4]).
Вот как реализована функция liftM:
liftM :: (Monad m) => (a –> b) –> m a –> m b
liftM f m = m >>= (x –> return (f x))
Или с использованием нотации do:
liftM :: (Monad m) => (a –> b) –> m a –> m b
liftM f m = do
x <– m
return (f x)
Мы передаём монадическое значение m в функцию, а затем применяем функцию к его результату, прежде чем поместить его обратно в контекст по умолчанию. Ввиду монадических законов гарантируется, что функция не изменит контекст; она изменяет лишь результат, который представляет монадическое значение.
Вы видите, что функция liftM реализована совсем не ссылаясь на класс типов Functor. Значит, мы можем реализовать функцию fmap (или liftM – называйте, как пожелаете), используя лишь те блага, которые предоставляют нам монады. Благодаря этому можно заключить, что монады, по крайней мере, настолько же сильны, насколько и функторы.
Класс типов Applicative позволяет нам применять функции между значениями с контекстами, как если бы они были обычными значениями, вот так:
ghci> (+) <$> Just 3 <*> Just 5
Just 8
ghci> (+) <$> Just 3 <*> Nothing
Nothing
Использование этого аппликативного стиля всё упрощает. Операция <$> – это просто функция fmap, а операция <*> – это функция из класса типов Applicative, которая имеет следующий тип:
(<*>) :: (Applicative f) => f (a –> b) –> f a –> f b
Так что это вроде fmap, только сама функция находится в контексте. Нам нужно каким-то образом извлечь её из контекста и с её помощью отобразить значение f a, а затем вновь собрать контекст. Поскольку все функции в языке Haskell по умолчанию каррированы, мы можем использовать сочетание из операций <$> и <*> между аппликативными значениями, чтобы применять функции, принимающие несколько параметров.
Однако, оказывается, как и функция fmap, операция <*> тоже может быть реализована, используя лишь то, что даёт нам класс типов Monad. Функция ap, по существу, – это <*>, только с ограничением Monad, а не Applicative. Вот её определение:
ap :: (Monad m) => m (a –> b) –> m a –> m b
ap mf m = do
f <– mf
x <– m
return (fx)
Функция ap – монадическое значение, результат которого – функция. Поскольку функция, как и значение, находится в контексте, мы берём функцию из контекста и называем её f, затем берём значение и называем его x, и, в конце концов, применяем функцию к значению и представляем это в качестве результата. Вот быстрая демонстрация:
ghci> Just (+3) <*> Just 4
Just 7
ghci> Just (+3) `ap` Just 4
Just 7
ghci> [(+1),(+2),(+3)] <*> [10,11]
[11,12,12,13,13,14]
ghci> [(+1),(+2),(+3)] `ap` [10,11]
[11,12,12,13,13,14]
Теперь нам видно, что монады настолько же сильны, насколько и аппликативные функторы, потому что мы можем использовать методы класса Monad для реализации функций из класса Applicative. На самом деле, когда обнаруживается, что определённый тип является монадой, зачастую сначала записывают экземпляр класса Monad, а затем создают экземпляр класса Applicative, просто говоря, что функция pure – это return, а операция <*> – это ap. Аналогичным образом, если у вас уже есть экземпляр класса Monad для чего-либо, вы можете сделать для него экземпляр класса Functor, просто говоря, что функция fmap – это liftM.
Функция liftA2 весьма удобна для применения функции между двумя аппликативными значениями. Она определена вот так:
liftA2 :: (Applicative f) => (a –> b –> c) –> f a –> f b –> f c
liftA2 f x y = f <$> x <*> y
Функция liftM2 делает то же, но с использованием ограничения Monad. Есть также функции liftM3, liftM4 и liftM5.
Вы увидели, что монады не менее сильны, чем функторы и аппликативные функторы – и, хотя все монады, по сути, являются функторами и аппликативными функторами, у них необязательно имеются экземпляры классов Functor и Applicative. Мы изучили монадические эквиваленты функций, которые используются функторами и аппликативными функторами.
Функция join
Есть кое-какая пища для размышления: если результат монадического значения – ещё одно монадическое значение (одно монадическое значение вложено в другое), можете ли вы «разгладить» их до одного лишь обычного монадического значения? Например, если у нас есть Just (Just 9), можем ли мы превратить это в Just 9? Оказывается, что любое вложенное монадическое значение может быть разглажено, причём на самом деле это свойство уникально для монад. Для этого у нас есть функция join. Её тип таков:
join :: (Monad m) => m (m a) –> m a
Значит, функция join принимает монадическое значение в монадическом значении и отдаёт нам просто монадическое значение; другими словами, она его разглаживает. Вот она с некоторыми значениями типа Maybe:
ghci> join (Just (Just 9))
Just 9
ghci> join (Just Nothing)
Nothing
ghci> join Nothing
Nothing
В первой строке – успешное вычисление как результат успешного вычисления, поэтому они оба просто соединены в одно большое успешное вычисление. Во второй строке значение Nothing представлено как результат значения Just. Всякий раз, когда мы раньше имели дело со значениями Maybe и хотели объединить несколько этих значений – будь то с использованием операций <*> или >>= – все они должны были быть значениями конструктора Just, чтобы результатом стало значение Just. Если на пути возникала хоть одна неудача, то и результатом являлась неудача; нечто аналогичное происходит и здесь. В третьей строке мы пытаемся разгладить то, что возникло вследствие неудачи, поэтому результат – также неудача.
Разглаживание списков осуществляется довольно интуитивно:
ghci> join [[1,2,3],[4,5,6]]
[1,2,3,4,5,6]
Как вы можете видеть, функция join для списков – это просто concat. Чтобы разгладить значение монады Writer, результат которого сам является значением монады Writer, нам нужно объединить моноидное значение с помощью функции mappend:
ghci> runWriter $ join (Writer (Writer (1, "aaa"), "bbb"))
(1,"bbbaaa")
Внешнее моноидное значение "bbb" идёт первым, затем к нему конкатенируется строка "aaa". На интуитивном уровне, когда вы хотите проверить результат значения типа Writer, сначала вам нужно записать его моноидное значение в журнал, и только потом вы можете посмотреть, что находится внутри него.
Разглаживание значений монады Either очень похоже на разглаживание значений монады Maybe:
ghci> join (Right (Right 9)) :: Either String Int
Right 9
ghci> join (Right (Left "ошибка")) :: Either String Int
Left "ошибка"
ghci> join (Left "ошибка") :: Either String Int
Left "ошибка"
Если применить функцию join к вычислению с состоянием, результат которого является вычислением с состоянием, то результатом будет вычисление с состоянием, которое сначала выполняет внешнее вычисление с состоянием, а затем результирующее. Взгляните, как это работает:
ghci> runState (join (state $ s –> (push 10, 1:2:s))) [0,0,0]