Эволюционизм. Том первый: История природы и общая теория эволюции - Лев Кривицкий
Шрифт:
Интервал:
Закладка:
Но если со сроками и с самим процессом расширения современная космологическая модель вызывает ряд сомнений и недоумений, то в области представлений о физических процессах и их взаимосвязях её использование привело к ряду захватывающих воображение успехов. Убедительное подтверждение теория горячей расширяющейся вселенной получила только в 60-е годы, когда было открыто так называемое реликтовое микроволновое излучение. До этого в космологической науке происходила непримиримая междоусобная борьба между основными теоретическими схемами, каждая из которых объясняла для всех уже практически неоспоримый факт расширения.
В 1950 г. теоретиками было отмечено, что если эволюция Метагалактики происходила в соответствии с моделью Фридмана-Леметра, то есть с расширением по законам теории относительности из некоторого начального состояния, и если верна теория исходного горячего состояния, предложенная Гамовым, то от эпохи горячего состояния, от тех изначальных времён в нынешней Вселенной должно сохраниться реликтовое, т. е. остаточное излучение, имеющее спектр абсолютно чёрного тела, т. е. тепловой, с температурой около 300 К, приходящего на Землю из космоса по всем направлениям, чрезвычайно равномерно (изотропно) и составляющего поэтому единый микроволновой фон.
И вот через 15 лет после предсказания, в 1965 г., такой 2,7-градусный микроволновой фон был действительно открыт, и его свойства почти идеально совпадали с предсказанными. Совершили это открытие американские астрономы Пензиас и Уилсон, удостоенные за него Нобелевской премии. Единственно разумным объяснением такого излучения является его происхождение от начальных моментов расширения Метагалактики, когда излучение смогло «отделиться» от вещества, т. е. Вселенная стала «прозрачной» для электромагнитных волн. В этот момент Вселенная представляла собой «огненный шар» с температурой около 3000° К (по другим данным – около 50000 К), её размеры были в тысячу раз меньше современных, возраст после первичного взрыва составлял несколько сотен тысяч лет, а вещество представляло собой водородно-гелиевую плазму. При столь высокой температуре существовало равновесие между веществом и излучением. Расширение от этого до теперешнего состояния привело к остыванию излучения, и оно стало вестником первых мгновений расширения Вселенной – Большого Взрыва.
Поистине захватывающая картина! Нас окружают сейчас фотоны, около 20 миллиардов лет назад находившиеся в первичном негеоцентрическом «бульоне», из которого образовалась вся наблюдаемая (и ненаблюдаемая) Метагалактика. Впоследствии были получены и другие, ещё более тонкие свидетельства в пользу модели Большого Взрыва, например, высокое содержание в окружающей нас Вселенной гелия и дейтерия, наблюдаемое астрономами. Другими причинами образование такого количества этих элементов объяснить никак не удаётся, а при Большом Взрыве сверхвысокие температуры и давления должны были способствовать термоядерному синтезу и, как показывают расчёты, именно этих ядер, а не тяжелее. Всё это не означает, разумеется, что указанная модель может претендовать на абсолютную истину. Наоборот. Дальнейшее развитие науки внесёт, несомненно, в наши представления свои коррективы. И не исключено, что это случится уже при жизни нашего поколения: очень велики темпы развития, а стало быть, и изменения наших знаний. Но ясно, что эти изменения произойдут по линии дальнейшего возвышения негеоцентричности системы знаний, отыскания всё более негеоцентричных источников саморазвития космоса, а не на путях возврата к старым, макроскопически-механическим представлениям. И вполне естественно, что именно модель, берущая начало из теоретических положений Фридмана-Леметра, обогащённая «горячей» концепцией Гамова, развитая на базе современных физических представлений и получающая всё более весомые опытные подтверждения, занимает в современной космологии центральное положение. Хотя эта модель, в отличие от прежней, механистической космологической модели, не является единственной, абсолютно общепризнанной, полностью охватывающей весь фундамент современной космологии, а в настоящее время, напротив, существует неисчислимое множество альтернативных ей моделей, ни одна из последних не может противопоставить ей сколько-нибудь убедительных аргументов. Поэтому она получила название эталонной, стандартной модели и играет в современной космологии роль той «печки», от которой «танцуют» в своих теоретических представлениях и астрофизики, и астрономы, и даже микрофизики, корректирующие свои теории с тем, чтобы они подходили под имеющийся космологический эталон.
Дальнейшее развитие эталонная модель получает в направлении экстраполяции тех физических превращений, которые претерпела материя Метагалактики в процессе своей эволюции после Большого взрыва к её нынешнему состоянию, в близкое и более отдаленное будущее. Итак, сегодня космологи получили возможность изучать историю и даже прогнозировать дальнейшее развитие окружающей нас Вселенной. Историческое видение распространяется тем самым на весь окружающий человека космический мир. Происходит это благодаря тому, что эталонная модель выступает как модель эволюционирующей горячей Вселенной, идея которой в первоначальном виде была выдвинута Г.А. Гамовым, а в 70-е годы всесторонне разработана российскими учёными А.П. Дорошкевичем, Я.В. Зельдовичем и И.Д. Новиковым. Последние, отталкиваясь от факта измеренной Пензиасом и Уилсоном температуры реликтового фона, проследили тепловую историю Метагалактики назад во времени и в связи с современными микрофизическими данными о ядерных превращениях и превращениях элементарных частиц. Это дало возможность проследить и ядерные превращения во Вселенной возрастом всего в несколько минут. Поистине захватывающие перспективы открылись перед исследователями – узнать, что делалось в макроскопической Вселенной через три минуты после её возникновения! Они рассчитали процессы образования сложных ядер по мере их вычленения из первичного негеоцентрического «комка». Получилось, что около 27 % первичных нуклонов (частиц в ядрах атомов) должны были слиться в ядра гелия. Дальше, пользуясь теми же методами, можно восстановить историю образования всех элементов таблицы Менделеева и всех известных астрономических объектов.
Однако возникает вполне закономерный вопрос: насколько вообще правомерна подобная вселенская космогония, не заходит ли наука слишком далеко за пределы своих сегодняшних конкретных возможностей в своем неуёмном стремлении постигнуть истину? В этом вопросе нет единства в лагере науки. Известный шведский астрофизик X. Альвен характеризует всю эволюционную космологию как «миф, украшенный софистическими математическими формулами, что делает его более престижным, но не обязательно заслуживающим большого внимания» (Альвен Х. Как следует подойти к космологии. – В кн.: Вопросы физики и эволюции космоса. Ереван, 1978, с, 48).
Но нигилистическое отрицание наших современных дерзких прорывов в историю Космоса ничего не даёт науке и оказывается теоретически неплодотворным. Более перспективным и реалистическим представляется подход крупнейшего американского астрофизика Стивена Вейнберга. «Конечно, – пишет Вейнберг, – вполне возможно, что эталонная модель частично или полностью неверна. Однако её ценность заключается не в её непоколебимой справедливости, а в том, что она служит основой для обсуждения огромного разнообразия наблюдаемых данных. Обсуждение этих данных в контексте эталонной космологической модели может привести к уяснению их значения для космологии независимо от того, какая модель окажется правильной в конечном счете» (Вейнберг С. Гравитация и космология. – М.: Мир, 1975, с. 503).
Эталонная модель позволяет выделить стадии, основные этапы в истории вещества Метагалактики: вначале образование из водородно-гелиевой плазмы элементарных частиц и атомов, затем – звёздная и галактическая стадия эволюции частиц и атомов, и наконец – стадия эволюции так называемой космической морфологии, включающей звёзды, собранные в галактики, галактики, образующие скопления галактик, скопления, образующие почти однородную массу, своеобразный космический газ.
А отсюда встаёт чрезвычайно интересный вопрос о будущем Метагалактики, её дальнейшей судьбе, а стало быть, и о дальнейшей судьбе крохотной частицы Метагалактики – Земли, и покоящейся на ней человеческой цивилизации, делающей в космос лишь свои первые шаги. Уравнения Фридмана приводят к двум вариантам дальнейшей эволюции Метагалактики – открытому и закрытому. В обоих случаях пространство-время не имеет абсолютных границ, но в открытом случае Метагалактика будет расширяться вечно, а в закрытом – расширение сменится сжатием, т. е. Метагалактика окажется пульсирующей. Всё зависит от плотности материи в Метагалактике. Подсчитано, что если плотность материи достигнет так называемой критической величины, т. е. около 1029 г/см3, гравитационное взаимодействие вещества постепенно пересилит импульс к расширению, данный Большим Взрывом, и «разбегание» вещества будет постоянно тормозиться, затем остановится, и, наконец, сменится сжатием.