8. Квантовая механика I - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
Теперь остается узнать, каким должно быть m. Попробуем сперва следующее рассуждение: пусть Т повернулся на 360°; ясно, что тогда он опять очутится под нулем градусов, и мы должны будем иметь С'+=С+и С'-= С-, или, что то же самое, eim2p=1. Мы получаем m=1. Это рассуждение не годится!
Чтобы убедиться в этом, допустим, что Т повернут на 180°. Если бы т было равно единице, мы получили бы
Но это просто опять получилось первоначальное состояние. Обе амплитуды попросту умножены на -1; это возвращает нас к исходной физической системе. (Опять случай всеобщей перемены фаз.) Это означает, что если угол между Т и S на фиг. 4.5, б увеличивается на 180°, то система (по отношению к Т) оказывается неотличимой от случая 0° и частицы должны опять проходить через состояние (+) прибора U. Но при 180° состояние (+) прибора U — это состояние (-х) начального прибора S. Так что состояние (+x) станет состоянием (-х). Но мы-то ведь ничего не делали для изменения начального состояния; ответ поэтому ошибочен. Не может быть, чтобы т=1.
Нет, все должно быть иначе: надо, чтобы только поворот на 360° (и ни на какие меньшие углы) воспроизводил то же самое физическое состояние. Это случится при m =1/2. Тогда и только тогда первым углом, воспроизводящим то же самое физическое состояние, будет угол φ=360°. При этом будет
Очень курьезно вдруг обнаружить, что поворот прибора на 360° приводит к новым амплитудам. Но на самом деле они не новы, потому что одновременная перемена знака ни к какой новой физике не приводит. Если кто-нибудь задумает переменить все знаки у всех амплитуд, подумав, что он повернулся на 360°, то это его дело — физику он получит ту же, прежнюю. Итак, наш окончательный ответ таков: если мы знаем амплитуды С+и С-для частиц со спином 1/2 по отношению к системе отсчета S и если затем мы используем базисную систему, связанную с Т (Т получается из S поворотом на j относительно оси z), то новые амплитуды выражаются через старые так:
§ 4. Повороты на 180° и па 90° вокруг оси у
Теперь попробуем подобрать преобразование для поворота Т (по отношению к S) на 180° вокруг оси, перпендикулярной к оси z, скажем вокруг оси у. (Оси координат мы определили на фиг. 4.1.) Иными словами, берутся два одинаковых прибора Штерна — Герлаха и второй из них, Т, переворачивается относительно первого, S, «вверх ногами» (фиг. 4.6).
Фиг. 4.6. Поворот на 180° вокруг оси у.
Если рассматривать частицы как маленькие магнитные диполи, то частица, которая находится в состоянии (+S) (в первом приборе она избирает «верхний» путь), и во втором приборе избирает «верхний» путь, т. е. окажется по отношению к Г в минус-состоянии. (В перевернутом приборе Т переворачиваются и поле, и направление его градиента; для частицы с заданным направлением магнитного момента сила не меняется.) То, что для S было «верхом», то для Т будет «низом». Для такого относительного расположения S и Т преобразования, естественно, должны дать
Как и раньше, нельзя исключить добавочные фазовые множители; на самом деле может оказаться, что
где b и g еще подлежат определению.
А что можно сказать о повороте вокруг оси у на угол 360° Мы уже знаем ответ для поворота на 360° вокруг оси z: амплитуда пребывания в любом состоянии меняет знак. Повороты на 360° вокруг любой оси всегда приводят прибор в прежнее положение. Таким образом, результат любого поворота на 360° должен быть таким же, как и при повороте на 360° вокруг оси z,—все амплитуды должны просто переменить знак. Теперь представим себе два последовательных поворота на 180° вокруг оси у по формуле (4.20); после них должен получиться результат (4.18). Иными словами,
Это означает, что
Следовательно, g=-b+p, и преобразование для поворота на 180° вокруг оси у может быть записано так:
Рассуждения, которыми мы только что пользовались, в равной степени применимы к поворотам на 180° вокруг любой оси в плоскости ху, хотя, конечно, повороты вокруг разных осей дадут для b разные числа. Но это единственное, чем они могут отличаться. В числе b имеется известный произвол, но, как только оно определено для какой-то одной оси в плоскости ху, оно определяется и для всех прочих осей. Принято выбирать b=0 для поворотов на 180° вокруг оси у.
Чтобы показать, что свобода такого выбора у нас есть, предположим, что мы решили, что b не равно нулю для поворота вокруг оси y; тогда можно показать, что в плоскости ху существует какая-то другая ось, для которой соответствующая фаза будет нулем. Найдем фазовый множитель bA для оси А, образующей с осью у угол a, как показано на фиг. 4.7, а.
Фиг. 4.7. Поворот на 180° вокруг оси А (а) эквивалентен повороту на 180° вокруг оси у (б), за которым следует поворот вокруг оси z' (в).
(Для удобства на рисунке угол а отрицателен, но это неважно.) Если теперь мы возьмем прибор Т, первоначально направленный гак же, как и S, а потом повернем его вокруг оси А на 180°, то его оси — назовем их х", у", z"— расположатся так, как на фиг. 4,7, а. Амплитуды по отношению к Т тогда станут
Но той же самой ориентации можно добиться двумя последовательными поворотами, показанными на фиг. 4.7, б и в. Возьмем сначала прибор U, повернутый по отношению к S на 180° вокруг оси у. Оси х', у' и z' прибора U будут такими, как на фиг. 4.7, б, а амплитуды по отношению к U будут даваться формулой (4.22).
Заметьте теперь, что от U к T можно перейти, повернув прибор U вокруг «оси z», т. е. вокруг z', как показано на фиг. 4.7, в. Из рисунка видно, что требуемый угол вдвое больше угла а, но направлен в обратную сторону (по отношению к z"). Используя преобразование (4.19) с j=-2a, получаем
Подставляя (4.22) в (4.24), получаем
Эти амплитуды, конечно, должны совпасть с полученными в (4.23). Значит, bAдолжно быть связано с a и b формулой
bA=b-a. (4.26) Это означает, что если угол a между осью А и осью у (прибоpa S) равен b то в преобразовании поворота на 180° вокруг оси А будет стоять bA=0.
Но коль скоро у какой-то из осей, перпендикулярных к оси z, может оказаться b=0, то ничто не мешает принять эту ось за ось у. Это всего лишь вопрос соглашения, и мы примем это в общем случае. Итог: для поворота на 180° вокруг оси у мы имеем
Продолжая размышлять о поворотах вокруг оси у, перейдем теперь к матрице преобразования для поворотов на 90°. Мы в состоянии установить ее вид, оттого что знаем, что два последовательных поворота на 90° вокруг одной и той же оси — это то же самое, что один поворот на 180°. Напишем преобразование для 90° в самой общей форме:
Второй поворот на 90° вокруг той же оси обладал бы теми же коэффициентами:
Подставляя (4.28) в (4.29), получаем
Однако из (4.27) нам известно, что
так что должно быть
(4.31)
Этих четырех уравнений вполне хватает, чтобы определить все наши неизвестные а, b, с и d. Сделать это нетрудно. Посмотрите на второе и четвертое уравнения. Вы видите, что a2=d2, откуда либо a=d, либо a=-d. Но последнее отпадает, потому что тогда не выполнялось бы первое уравнение. Значит, d=a. А тогда сразу же выходит b=1/2a и с=-1/2а. Теперь все выражено через а. Подставляя, скажем, во второе
уравнение значения b и с, получаем
а2 -1/4a2 = 0. или а4 =1/4.