Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Математика » Введение в теорию риска (динамических систем) - Владимир Живетин

Введение в теорию риска (динамических систем) - Владимир Живетин

Читать онлайн Введение в теорию риска (динамических систем) - Владимир Живетин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 14 15 16 17 18 19 20 21 22 23
Перейти на страницу:

Вероятность Р3 характеризует такое состояние, при котором превышение х значения хкр не фиксируется в процессе контроля или оценки параметра х. Эту вероятность назовем вероятностью опасной ситуации, а P (Aγ | В'α) = Р'3 – условной вероятностью опасной ситуации. Вероятности Р2 и Р3 включают Р'2, Р'3, которые не зависят от характеристик средств оценки или контроля и поэтому при анализе и синтезе системы контроля могут не рассматриваться. Однако это необходимо учитывать при назначении допустимых значений Р2, Р3, Р'2, Р'3. При этом Р2 и Р3 отличаются от Р'2, Р'3 на постоянные величины.

Запишем вероятности Р2 и Р3 в явном виде и выразим их через xн, xв, , и плотности распределения вероятностей случайных величин α и γ. Вероятность

Воспользуемся дистрибутивными свойствами символов ∩ и . Обозначим

Тогда для Р2 имеем:

Рассмотрим каждое из пересечений отдельно. Рассмотрим область на плоскости:

Так как α и β – случайные независимые величины, то область их значений можно изобразить так. Обозначая реализацию α через x, а реализацию β – через y, получим ситуацию, изображенную на рис. 1.42 в виде области G1. Аналогично рис. 1.43–1.47:

Рис. 1.42

Рис. 1.43

Рис. 1.44

Рис. 1.45

Рис. 1.46

Рис. 1.47

Используя равенства (1.6), несовместность α и β, независимость А, В, С и несовместимость D, K, получим

где

φα(x) – плотность вероятностей случайной величины α, φβ(y) – плотность вероятностей случайной величины β;

Таким образом, Р2 есть сумма двух вероятностей, одна из которых обусловлена событиями D, вторая – событиями K. Отметим, что полученное выражение справедливо для двустороннего ограничения индикатора х, подлежащего контролю и ограничению, когда измеренная величина хизм, с учетом погрешностей δх, удовлетворяет D или K.

Окончательно,

Из теории вероятностей известно, что

где Fβ(x) – функция распределения случайной величины β; Rβ(x) – дополнительная функция распределения случайной величины β. Тогда формулу (1.7) можно переписать в следующем виде:

Перейдем к вычислению вероятности P3:

Таким образом,

Если параметры подчинены односторонним ограничениям, то, согласно формулам (1.8) и (1.9), вероятности событий (Aα ∩ Bγ) и (Aγ ∩ B'α) вычисляются следующим образом. В случае одностороннего ограничения сверху можно считать, что xн и → ∞, тогда Fβ(–∞) = 0:

В случае одностороннего ограничения снизу можно считать, что xв, → +∞, и тогда

Аналогично, если , → +∞, то

Если xв, → +∞, то

Часто при практических расчетах удобно использовать не φα(x), а , где Δх = хфхн. В этом случае для индикатора, подлежащего ограничению снизу, получаем:

где W(t, Δx, δx) – совместная плотность распределения случайных процессов Δx, δx в момент времени t; xn = xкдоп.

Вид подынтегральной функции выражений (1.11), (1.12) либо (1.13), (1.14) и основные факторы, подлежащие учету при ее формировании, определяются объектами или подсистемами анализируемой системы и их режимом работы, а также множеством других параметров и факторов. При этом погрешность δx, как правило, не оказывает влияния на величину отклонения от номинального режима Δx. Это обстоятельство есть допущение, которое каждый раз необходимо проверять.

С учетом сказанного выше, при практических расчетах вероятностей Pi зависимостью между погрешностями измерения δx и величинами отклонения параметров Δx от номинального режима можно пренебречь. В результате

где Δ = xдоп; Δ1 = xn – Δx.

На рис. 1.48 представлена геометрическая интерпретация событий, соответствующих вероятностям P2 и P3, определяемым в случае, когда ограничение сверху.

Рис. 1.48

Из последних соотношений следует, что вероятности Р3 и Р2 зависят от плотностей распределения W1(Δx) отклонений x от номинальных значений xн, пороговых xn и допустимых xдоп значений параметров, плотности распределения суммарной погрешности W2(δx). В случае одностороннего ограничения Р3 представляет вероятность попадания точки (Δx, δx) в область G1, ограниченную прямыми Δx = а = xдоп и δx = xn – Δx (рис. 1.49). Величина δx изменяется от –∞ до b = xn. Вероятность попадания точки (Δx, δx) в область G2 представляет собой Р2.

Случай двустороннего ограничения параметров представлен на рис. 1.50. При этом Р3 представляет вероятность попадания точки с координатами (Δx, δx) в области G1 и G3 одновременно, а вероятность Р2 – попадание (Δx, δx) в области G2, G4 одновременно.

Если Р3 и Р2 удовлетворяют допустимым или нормативным значениям Рдоп, то система способна выполнять поставленную перед ней цель. Если, например, Р3 > Р3доп, то необходимо принимать решение об изменении, в том числе уменьшении границ пороговых значений xn.

Рис. 1.49

Рис. 1.50

Выводы

Полученные вероятностные показатели рисков и безопасности динамических систем могут быть применены в практической деятельности человека, если мы сможем установить области допустимых состояний изучаемой динамической системы и построить плотности вероятности случайных процессов, подлежащих контролю и ограничению.

Проблемы решения обусловлены:

1) принадлежностью любой динамической системы к иерархии динамических систем бытия, что обусловливает особенности анализа;

2) тем, что в общем случае динамическая система обладает структурно-функциональными свойствами, которые в процессе функционирования динамической системы подвержены как эволюции, так и инволюции;

3) наличием взаимосвязи динамических систем, направленных на достижение единой цели в общем случае на иерархическом уровне.

Теоретические основы оценки потерь и соответствующих рисков динамической системы связаны с разработкой математических моделей, направленных на нахождение методов и средств нейтрализации потерь, например путем построения областей допустимых состояний Ωдоп и построения таких управлений, при которых динамический объект не покидает Ωдоп.

1 ... 14 15 16 17 18 19 20 21 22 23
Перейти на страницу:
Тут вы можете бесплатно читать книгу Введение в теорию риска (динамических систем) - Владимир Живетин.
Комментарии