5b. Электричество и магнетизм - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
Короткая проволока, закрепленная вдоль радиуса, вращаясь вместе с цилиндром, приобретает на своих концах индуцированные заряды.
«Относительности вращения» не существует. Вращающаяся система — не инерциальная система, и законы физики в ней другие. Мы должны пользоваться уравнениями электромагнетизма только в инерциальных системах координат.
Было бы здорово, если бы смогли измерить абсолютное вращение Земли с помощью такого заряженного цилиндра, но эффект, к несчастью, настолько мал, что его невозможно наблюдать даже с помощью самых тонких современных приборов.
§ 5. Поле маленькой петли; магнитный диполь
Воспользуемся методом векторного потенциала, чтобы найти магнитное поле маленькой петли с током. Как обычно, под словом «маленькая» мы просто подразумеваем, что нас интересуют поля только на больших расстояниях по сравнению с размером петли. Как мы увидим, любая петелька представляет собой «магнитный диполь». Это значит, что она создает магнитное поле, подобное электрическому полю от электрического диполя.
Возьмем сначала прямоугольную петлю и выберем оси координат, как показано на фиг. 14.6. Токов в направлении z нет, поэтому Azравно нулю. Есть токи в направлении х по обеим сторонам прямоугольника, длина которых а. В каждой стороне плотность тока и ток однородны. Поэтому решение для Ахв точности подобно электростатическому потенциалу от двух заряженных палочек (фиг. 14.7). Поскольку палочки имеют противоположные заряды, их электрический потенциал на больших расстояниях есть как раз дипольный потенциал (см. гл. 6,
§ 5). В точке Р на фиг. 14.6 потенциал равен
(14.28)
где р — дипольный момент распределения зарядов. В данном случае дипольный момент равен полному заряду на одной палочке, умноженному на расстояние между ними:
(14.29)
Дипольный момент смотрит в отрицательном направлении y, поэтому косинус угла между R и р равен —ylR (где у — координата Р). Итак, мы имеем
Заменяя l на I/с2, сразу же получаем Ах:
(14.30)
С помощью тех же рассуждений:
(14.31)
Фиг. 14.7. Распределение jx в проволочной петле о током, изображенной на фиг. 14.6.
Фиг. 14.8. Векторный потенциал маленькой петли с током, расположенной в начале координат (в плоскости ху). Поле магнитного диполя.
Снова Аупропорционально х, а Ахпропорционально —y, так что векторный потенциал (на больших расстояниях) идет по кругу вокруг оси z, циркулируя таким же образом, как ток I в петле (фиг. 14.8).
Величина А пропорциональна Iab, т. е. току, умноженному на площадь петли. Это произведение называется магнитным дипольным моментом (или часто просто «магнитным моментом») петли. Мы обозначим его через m:
(14.32)
Векторный потенциал маленькой плоской петельки любой формы (круг, треугольник и т. п.) также дается уравнениями (14.30) и (14.31), если заменить Iab на
(14.33)
Мы предоставляем вам право это доказать.
Нашему уравнению можно придать векторную форму, если определить вектор m как нормаль к плоскости петли с положительным направлением, определяемым по правилу правой руки (см. фиг. 14.8). Тогда можно написать
(14.34)
Нам еще нужно найти В. Пользуясь (14.33) и (14.34), а также (14.4). получаем
(14.35)
(под многоточием мы подразумеваем m/4pe0с2),
Компоненты поля В ведут себя точно так же, как компоненты поля Е для диполя, ориентированного вдоль оси z [см. уравнения (6.14) и (6.15), а также фиг. 6.5, стр. 115]. Вот почему мы называем петлю магнитным диполем. Слово «диполь» в применении к магнитному полю немного запутывает, потому что нет отдельных магнитных «полюсов», соответствующих электрическим зарядам. Магнитное «дипольное поле» создается не двумя «зарядами», а элементарной петлей с током.
В общем-то довольно любопытно, что, начав с совсем разных законов, С·Е=r/e0 и СXВ=j/e0с2, можно прийти к полю одного и того же вида. Почему так получается? Потому что дипольные поля возникают, только когда мы находимся далеко от всех токов и зарядов. Тогда в большей части пространства уравнения для Е и В одинаковы: у обоих дивергенция и ротор равны нулю. Следовательно, они дают одни и те же решения. Однако источники, конфигурацию которых мы описываем с помощью дипольных моментов, физически совершенно различны. В одном случае это циркулирующий ток, а в другом — пара зарядов, один над, а другой под плоскостью петли для соответствующего поля.
§ 6. Векторный потенциал цепи
Нас часто интересует магнитное поле, создаваемое цепью проводов, в которой диаметр провода очень мал по сравнению с размерами всей системы. В таких случаях мы можем упростить уравнения для магнитного поля.
Для тонкого провода элемент объема можно записать в виде
dV = Sds,
где S — площадь поперечного сечения провода, a ds — элемент расстояния вдоль проволоки. В самом деле, поскольку вектор ds имеет то же направление, что и j (фиг. 14.9), и мы можем предположить, что j постоянно по любому данному сечению, то можно записать векторное уравнение
(14.37)
Фиг. 14.9. Для тонкой проволоки jdV то же самое, что и Ids.
Фиг. 14.10. Магнитное поле провода может быть получено интегрированием по всей цепи.
Ho jS — как раз то, что мы называем током I во всем проводе, так что наш интеграл для векторного потенциала (14.19) становится равным
(14.38)
(фиг. 14.10). (Мы предполагаем, что / одно и то же вдоль всего контура. Если есть несколько ответвлений с разными токами, то следует, конечно, брать соответствующий ток в каждой ветви.)
Как и раньше, можно найти поле с помощью (14.38) либо прямым интегрированием, либо решая соответствующую электростатическую задачу.
§ 7. Закон Био— Савара
В ходе изучения электростатики мы нашли, что электрическое поле известного распределения зарядов может быть получено сразу в виде интеграла [уравнение (4.16)]
Как мы видели, вычислить этот интеграл (а их на самом деле три, по одному на каждую компоненту) обычно бывает труднее, чем вычислить интеграл для потенциала и взять от него градиент.
Подобный интеграл связывает и магнитное поле с токами. Мы уже имеем интеграл для А [уравнение (14.19)]; мы можем получить интеграл и для В, если возьмем ротор от обеих частей:
А теперь мы должны быть осторожны. Оператор ротора означает взятие производных от А(1), т. е. он действует только на координаты (x1, y1, z1). Можно внести оператор СX под интеграл, если помнить, что он действует только на переменные со значком 1, которые появляются, конечно, только в
Мы получаем для x-компоненты В:
(14.41)
Величина в скобках есть просто x-компонента от
Такие же результаты получаются и для других компонент, и мы имеем
(14.42)
Интеграл дает В сразу через известные токи. Геометрия здесь точно такая же, какая изображена на фиг. 14.2.
Если токи текут только по тонким проводам, мы можем, как в предыдущем параграфе, немедленно взять интеграл поперек провода, заменив jdV на Ids, где ds — элемент длины провода. Тогда, пользуясь обозначениями фиг. 14.10, имеем
(14.43)
(Знак минус появляется потому, что мы изменили порядок векторного произведения.) Это уравнение для В называется законом Био — Савара в честь открывших его ученых. Он дает формулу для прямого вычисления магнитного поля, создаваемого проводами с током.
Вероятно, вы удивились: «Какой же прок от векторного потенциала, если мы можем сразу найти В в виде векторного интеграла? В конце концов А тоже определяется тремя интегралами!» Из-за векторного произведения интегралы для В обычно сложнее устроены, как это видно из уравнения (14.41). Кроме того, поскольку интегралы для А похожи на электростатические, то нам не надо их вычислять заново. Наконец, мы увидим, что в более трудных теоретических вопросах, таких, как теория относительности, в современном изложении законов механики, вроде принципа наименьшего действия, о котором будет рассказано позже, в квантовой механике, векторный потенциал играет важную роль.