Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Математика » Мир математики. т.30. Музыка сфер. Астрономия и математика - Роза Мария Рос

Мир математики. т.30. Музыка сфер. Астрономия и математика - Роза Мария Рос

Читать онлайн Мир математики. т.30. Музыка сфер. Астрономия и математика - Роза Мария Рос

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 18 19 20 21 22 23 24 25 26 ... 30
Перейти на страницу:

В 1610 году Галилей открыл спутники Юпитера: Ио, Европу, Ганимед и Каллисто, которые впоследствии стали называться галилеевыми спутниками. Их затмения наблюдались с четкой периодичностью, и Галилей предложил решение задачи о долготе, основанное на результатах наблюдений затмений. Однако увидеть спутники Юпитера было непросто даже с обсерватории на берегу, поэтому метод Галилея оказался неприменим на практике. Хотя ученый даже сконструировал специальный шлем с подзорной трубой, упрощавший наблюдение, сам он признавал, что на его точность могло повлиять даже биение сердца наблюдателя. После смерти Галилея и с усовершенствованием телескопов этот метод начали применять на суше для более точного определения долготы и, следовательно, составления более точных карт. Людовик XIV говорил, что «потерял больше земель по вине своих картографов, чем по вине своих врагов».

Еще один метод определения долготы заключался в оценке изменений магнитного поля. Но от этого метода пришлось отказаться, поскольку отклонение магнитного поля зависело не только от места, но и от времени наблюдений.

Галилеевы спутники Юпитера, слева направо: ИоЕвропа, Гэнимед, Каллисто.

* * *

ЗАТМЕНИЯ ГАЛИЛЕЕВЫХ СПУТНИКОВ И СКОРОСТЬ СВЕТА

В 1680 году итальянский астроном Джованни Доменико Кассини опубликовал свои таблицы затмений галилеевых спутников Юпитера, в которых приводились дата и время последующих затмений. Юный датский астроном Оле Рёмер показал: когда Земля находилась ближе к Юпитеру, затмения наблюдались раньше расчетного времени, а когда Земля отдалялась от Юпитера, затмения наблюдались позже расчетного времени. Отсюда следует: расхождения возникают из-за того, что лучу света требуется определенное время на то, чтобы пройти расстояние, равное диаметру земной орбиты. Следовательно, скорость света составляет 300000 км/с.

* * *

Решение, найденное часовщиком

Требовалось создать точные механические часы, пригодные для мореплавателей. С их помощью моряки смогли бы определять точное время в порту отплытия (с известной долготой). Если бы часы были идеально точными, то достаточно было определить по Солнцу полдень, посмотреть на часы, показывающие время в порту отплытия, и найти разницу во времени. А уж на ее основании очень просто определить долготу корабля. Первые маятниковые часы изготовил Гюйгенс, однако они сохраняли точность лишь в определенных погодных условиях. Следовательно, использовать такие часы в открытом море было нельзя.

Разные страны предлагали премии тому, кто сможет изготовить механические часы необходимой точности: так, король Испании Филипп III пообещал пожизненную пенсию тому, кто решит задачу о долготе; британский парламент во времена правления королевы Анны, в 1714 году, принял Декрет о долготе, согласно которому того, кто решит задачу с погрешностью менее половины градуса (то есть 50 километров на экваторе), ждала премия в 20 тысяч фунтов. Как видите, требуемая точность была очень велика, а огромный размер премии наводит на мысли, что англичане были на грани отчаяния — от решения задачи о долготе зависела экономика всей страны. Чтобы автор решения получил премию, его часы должны были сохранять требуемую точность хода во время плавания до Вест-Индии и обратно. Для контроля был учрежден Совет по долготе, куда вошли глава Гринвичской королевской обсерватории, глава Лондонского королевского общества, морской министр, председатель палаты общин, делегат от вооруженных сил и несколько ученых. Получить премию пытались многие. Мы отметим лишь Джереми Такера: он сконструировал часовой механизм, позднее дополненный двумя усовершенствованиями, которые используются и по сей день. Речь о вакуумной камере со стеклянными стенками и особой системе, благодаря которой часы не останавливались во время завода.

Решение задачи о долготе нашел плотник Джон Гаррисон, который сконструировал первые часы из маленьких латунных деталей, когда ему не было и двадцати лет. Гаррисон дополнил часы таблицей уравнения времени для сравнения фактического и солнечного времени. Он же придумал маятник, состоящий из двух стержней, изготовленных из чередующихся полос различных металлов, чтобы компенсировать воздействие перепадов температуры на точность хода. Однако в морских часах маятнику было не место, поэтому Гаррисон разработал особый механизм, обеспечивавший равномерную передачу энергии от сжатой пружины.

* * *

СОЛНЕЧНОЕ ВРЕМЯ И ЗВЕЗДНОЕ ВРЕМЯ

Из соображений удобства мы делим сутки на 24 часа — именно за такой промежуток времени Солнце проходит через меридиан одного и того же места два раза подряд. Мы уже говорили, что в действительности используем среднее солнечное время: движение Земли вокруг Солнца описывается законом равенства площадей, поэтому Земля иногда движется чуть медленнее, иногда — чуть быстрее, но в среднем Солнце совершает полный круг над горизонтом и дважды проходит через меридиан места за 24 часа.

Если в качестве точки отсчета мы будем использовать не Солнце, а неподвижные звезды, то увидим, что период обращения Земли несколько меньше: любая неподвижная звезда проходит два раза подряд через один и тот же меридиан места за 23 часа 56 минут 4 секунды, так как Земля при вращении вокруг Солнца движется в опережением в 3 минуты 56 секунд.

Разница между звездным и солнечным временем.

Джон Гаррисон обеспечивал точность своих часов по результатам наблюдений за определенными звездами из своей примитивной обсерватории. Он обнаружил, что звезды постоянно появлялись на небе на 3 минуты 56 секунд раньше, чем прошлой ночью. Таким образом он добился расхождения всего в одну секунду в месяц — стандартной погрешностью для часов того времени была одна минута в сутки. Гаррисон получил займ от Совета по долготе на изготовление своего первого морского хронометра Н1. На работу ушло пять лет. Хронометр был изготовлен из дерева, весил 34 кг и находился внутри стеклянного резервуара объемом в 1 м3  (отметим, что первый хронометр Гаррисона работает до сих пор). Он был погружен на корабль, отплывавший в Лиссабон, и очень пригодился в плавании. В 1737 году Совет по долготе был созван в первый раз и единогласно утвердил хронометр Н1. Единственным, кто счел хронометр несовершенным, был сам Гаррисон, который попросил новый займ на внесение необходимых изменений. В 1739 году был создан хронометр Н2, в 1751-м — НЗ. Лишь хронометр Н4 отличался существенно меньшим весом и размером.

Любопытно, что Гаррисон начал работу над принципиально иным хронометром после того, как получил от одного из учеников в подарок карманные часы. Н4 имел 133 мм в диаметре и весил 1300 г, одного завода хватало на 30 часов, при этом во время завода хронометр не останавливался. В октябре 1761 года Гаррисон отправился на Ямайку и по прибытии в Порт-Ройял, после двух месяцев в пути, астрономическими методами определил, что отставание хронометра составило всего 5 секунд, что соответствовало ошибке в 1,25 минуты долготы, или примерно 2000 м — намного меньше, чем требовалось Декретом о долготе. Однако Совет постановил, что проведенных экспериментов недостаточно для определения долготы в открытом море. Дело в том, что в Совет вошли три новых участника, три математика, которые настаивали на том, что долгота Порт-Ройяла не была установлена по результатам наблюдения за спутниками Юпитера. При этом капитан корабля не знал и не мог знать, что должен определить долготу таким способом. Хронометр Н4 был вновь погружен на борт корабля в 1764 году, и на этот раз по результатам испытаний Совет постановил: «часы идут с достаточной точностью». Однако Совет предложил Гаррисону лишь половину премии и внес дополнительное условие: изобретатель должен изготовить еще два хронометра и открыть свои секреты, чтобы можно было начать серийное производство.

На изготовление копии, Н5, у Гаррисона ушло три года. Ему было уже семьдесят девять лет, и он не знал, успеет ли закончить работу. К счастью, король Георг III настоял, чтобы Совет выплатил Гаррисону оставшуюся часть премии. Погрешность хода хронометра Н5 составила всего 1/3 секунды в день, а само устройство было подлинным шедевром.

В хронометрах Гаррисона практически отсутствовало трение, им не требовалась смазка, они были прекрасно сбалансированы и поддерживали точность хода в любой температуре. Так что стоит отдать должное искусству мастера.

Гаррисон умер в 1776 году, и доступ к его наработкам получили многие часовые мастера, которые приступили к изготовлению собственных хронометров. В 1860 году на 200 кораблей английского флота приходилось 800 хронометров. За короткое время это устройство стало привычным средством навигации и заняло важное место в мореходном деле. Можно сказать, что морское господство Британии, да и вообще появление Британской империи стало возможным благодаря быстрому и точному определению координат кораблей в открытом море. Этот способ применялся еще совсем недавно, пока ему на смену не пришли системы спутниковой навигации.

1 ... 18 19 20 21 22 23 24 25 26 ... 30
Перейти на страницу:
Тут вы можете бесплатно читать книгу Мир математики. т.30. Музыка сфер. Астрономия и математика - Роза Мария Рос.
Комментарии