Цитология - Наталья Стволинская
Шрифт:
Интервал:
Закладка:
Продолжительность клеточного цикла зависит от особенности клеток. В настоящее время показано, что суммарная длительность S-периода и G2-фазы – величина относительно постоянная, для многих эукариот это 10–15 часов. Время G1-периода может очень сильно изменяться у разных клеточных типов одного и того же организма. Например, у мыши в разных типах эпителиальных клеток длительность G1-периода колеблется от 3 часов в волосяных фолликулах до 528 часов в эпидермисе уха.
Как разбиралось ранее, по мере того как клетка дифференцируется, она утрачивает способность к делению, то есть клетка выходит из клеточного цикла. Выход из клеточного цикла – сложный процесс, который регулируется специальными белками. Клетка не может выйти из клеточного цикла в любой момент. Она может это сделать только в определенной точке. Чаще всего это происходит в конце G1-периода, реже – в G2-фазе до начала митоза. Период жизни клетки, когда она находится вне клеточного цикла и не может делиться называется G0-фазой. Существуют клетки, которые пребывают в G0-фазе в течение всей жизни индивидуума. Это нейроны, мышечные клетки сердца, клетки хрусталика глаза. Клетки печени человека могут в течение нескольких месяцев находиться в G0-периоде, а потом опять войти в клеточный цикл и начать делиться. Фибробласты соединительной ткани – малодифференцированные клетки. Они активно размножаются при зарастании раны, а до этого могут длительное время находиться вне клеточного цикла в G0-фазе. Стволовые клетки постоянно находятся в клеточном цикле. Но их клеточный цикл очень длительный за счет увеличения фазы G1.
Регуляция клеточного цикла, переход из одного периода в другой – очень сложный процесс, который активно изучается в настоящее время. Описаны белки и ферменты-регуляторы клеточного цикла: циклины, протеинкиназы, факторы, стимулирующие клеточный цикл, и факторы, тормозящие его. Найдены контрольные точки регуляции процессов клеточного цикла. В регуляции участвуют как внутриклеточные белки, так и активные молекулы, выделяемые соседними клетками, а также гормоны, выделяемые в кровь железами внутренней секреции. Широко известно, что в качестве допинга спортсмены часто используют эритропоэтин. Это биологически активное вещество, стимулирующее деление клеток крови, своеобразный фактор роста. Факторы роста могут синтезировать и выделять из клеток многие клеточные типы. Известны факторы роста эпителиальных клеток, фибробластов, тромбоцитов и даже нервных клеток. Все они могут принимать участие в регуляции клеточного деления на уровне организма в целом.
Вопросы
1. Дайте определение клеточного цикла.
2. Что такое интерфаза? Что происходит с клеткой в интерфазе?
3. Перечислите периоды клеточного цикла, в течение которых происходит транскрипция в ядре.
4. В каком периоде клеточного цикла происходит репликация?
5. Какова продолжительность митоза, S + G2 периодов?
6. Продолжительность какого периода наиболее изменчива? Приведите примеры.
7. Что происходит с клеткой в G0-фазе?
8. Дайте характеристику клеточного цикла стволовых клеток.
9. Как осуществляется регуляция клеточного цикла?
Глава 2. Методы современной цитологии
Цитохимия
Развитие микротехники активно способствовало накоплению данных о тонком клеточном строении. В конце XIX в., благодаря развитию методов специального окрашивания клеточных структур на световом уровне микроскопирования, были выявлены и описаны в клетках сетчатый аппарат Гольджи и митохондрии. Ближе к середине XX в. появились объемные научные издания, обобщающие достижения в этой области. Область цитологии, которая изучает содержание и распределение химических соединений внутри клетки, динамику их превращений в процессе жизнедеятельности, в том числе при патологии, стали называть цитохимией. Цитохимия широко используется и в настоящее время. Разработано громадное количество окрасочных приемов, выявляющих конкретные химические соединения в клетке, особенно с использованием люминесцентных микроскопов.
Методы цитохимии подразделяют на две большие категории. К первой категории относятся методы, основанные на использовании специфических красителей, взаимодействующих с конкретными химическими соединениями. Например, при окрашивании Суданом черным в клетках выявляются жиры в виде черных капель, тогда как ядра и структуры цитоплазмы останутся бесцветными (рис. 2.1).
Вторая категория методов цитохимии основана на проведении химической реакции непосредственно на срезе на предметном стекле. Суть реакции состоит в том, чтобы гидролизовать изучаемое химическое соединение так, чтобы образовались специфические реакционные группы, взаимодействующие с определенным красителем. Условия гидролиза для каждого соединения подбираются индивидуально. Например, обесцвеченное основание фуксина, взаимодействуя с альдегидными группами, образует прочное соединение, которое в присутствии сернистой кислоты окрашивается в красный цвет.
Рис. 2.1. Выявление жира в клетках печени аксолотля при окраске Суданом черным.
Классическим примером является реакция Фельгена на выявление ДНК. В этом случае гидролиз проводится в 1М соляной кислоте при длительном нагревании препарата. В результате реакции от молекулы ДНК отщепляются пуриновые азотистие основания – аденин и гуанин. На их месте на дезоксирибозе образуются свободные альдегидные группы, способные вступить в реакцию с красителем. Препарат после реакции помещают в раствор красителя. Связывание фуксина происходит строго количественно. После отмывания препарата в слабом растворе сернистой кислоты места локализации ДНК окрашиваются в красный цвет (рис. 2.2а). Такие препараты можно использовать для количественного определения ДНК в клетке.
Для выявления полисахарида гликогена, мономером которого является глюкоза, предметное стекло с тонкими срезами ткани помещают в раствор периодата калия (KIO4) и проводят гидролиз при комнатной температуре. Такая обработка приводит к разрушению гликогена в клетках с активацией альдегидных групп в молекуле глюкозы. Затем препарат окрашивают так же, как описано для реакции на ДНК. В этом случае окрасятся участки клеток, содержащие гликоген. Специфическим в данном случае является не краситель, а подбор соответствующей химической реакции, которая проводится непосредствено на цитологическом препарате (рис. 2.2б).
Рис. 2.2. Выявление ДНК по Фельгену (а) и гликогена после гидролиза в периодате (б) с помощью обесцвеченного основания фуксина. Клетки печени аксолотля.
С помощью цитохимических цветных реакций в клетках выявляют разнообразные полисахариды, специфические аминокислоты в белках, нуклеиновые кислоты, жиры, липиды и множество ферментов, участвующих в метаболических процессах обмена и превращения веществ. Ферменты обычно выявляют по наличию продуктов их активности.
В настоящее время широко используются флюоресцентные красители для специфического окрашивания биологических полимеров или клеточных органелл. Известны флюорохромы для выявления ДНК, РНК, липидов, миотохондрий и т. д. Флюоресцентная цитохимия активно развивается.
Вопросы
1. Что такое цитохимия?
2. Как можно окрасить ДНК в клетках?
3. Как выявляется в клетках гликоген? Жир?
Иммуноцитохимия
Ближе к концу XX в. цитохимия перешла на новый качественный уровень. Стало успешно развиваться новое направление цитохимии – иммуноцитохимия, которая в настоящее время является одним из самых передовых методов клеточной биологии. Для этого метода применяются люминесцентные микроскопы и красители флюорохромы.
При использовании для иммуноцитохимии флюорохромы химическим путем «сшивают» (конъюгируют) с антителами. Антитела имеют специфичность к определенному белку, который служит антигеном, и взаимодействуют не с любыми клеточными структурами, а только с теми участками клеток, где находится изучаемый белок. Таким образом, с помощью метода цитохимии можно изучать, какие специфические белки локализованы в тех или иных клеточных структурах.
Антитела, используемые в иммуноцитохимии, могут быть маркированы, помимо люминесцентных красителей, ферментами или электронно-плотными частицами. В такой модификации метода выявление специфических белков осуществляется с помощью электронного микроскопа.
С помощью метода иммуноцитохимии изучены состав и расположение элементов цитоскелета клеток растений и животных, характерные особенности цитоскелета опухолевых клеток. С помощью этого метода научились выявлять индивидуальность хромосом человека, что необходимо при изучении развития патологий, а также в судебной медицине. Метод иммуноцитохимии позволил выявить на поверхности разнообразных клеток индивидуальные маркеры, что облегчило понимание многих патологических процессов, позволило выяснить, какие клеточные типы являются отправной точкой в развитии ряда болезней. Например, показана роль макрофагов и гладкомышечных клеток кровеносных сосудов в развитии атеросклероза.