Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Биология » Цитология - Наталья Стволинская

Цитология - Наталья Стволинская

Читать онлайн Цитология - Наталья Стволинская

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 3 4 5 6 7 8 9 10 11 12
Перейти на страницу:

В растворенном виде в цитоплазме находятся малые органические молекулы, в состав которых входят четыре основных химических элемента, – C, H, O и N. Например, аминокислоты, простые сахара, нуклеотиды и предшественники жирных кислот. Эти молекулы дают начало макромолекулам: нуклеиновым кислотам, белкам, полисахаридам, жирным кислотам. Кроме того, малые молекулы могут расщепляться в клетке до простых соединений, и энергия их химических связей будет использоваться клеткой для многих процессов жизнедеятельности. Так, глюкоза в процессе окисления расщепляется до углекислого газа и воды. Освободившаяся энергия аккумулируется в форме двух важнейших соединений клетки – АТФ и НАД·Н.

Простые сахара используются клеткой для построения сложных полисахаридов, которые являются запасными веществами. В животной клетке вещество запаса гликоген, а в растительной – крахмал. Мономером этих веществ служит глюкоза. Целлюлоза, главный компонент оболочки растительных клеток, тоже является полимером, построенным из простых сахаров.

Аминокислоты являются строительным материалом для синтеза гигантских линейных полимеров – белков. В белках обычно встречается 20 разных аминокислот. Все аминокислоты имеют общую особенность в строении молекул: карбоксильную группу (-СООН) и аминогруппу (-NH2), связанные с одним и тем же углеродным атомом.

Нуклеотиды при полимеризации образуют РНК и ДНК. В состав нуклеотида входит азотистое основание, связанное с пятиуглеродным сахаром (рибозой или дезоксирибозой), который в свою очередь несет еще и фосфатную группу. Пиримидиновые азотистые основания – цитозин, тимин и урацил – являются производными шестичленного кольца. Пуриновые основания (гуанин и аденин) дополнены вторым пятичленным кольцом. Нуклеотид имеет название, соответствующее азотистому основанию:

Роль нуклеотидов в клетке связана не только с нуклеиновыми кислотами. Основной носитель энергии в клетке – АТФ, имеет в своем составе азотистое основание аденин, соединенное с рибозой, к которой последовательно присоединены три остатка фосфорной кислоты. Другое производное аденина – циклический аденозинмонофосфат (цАМФ) – служит уникальным внутриклеточным сигналом и регулятором скорости множества реакций в клетке.

Основную роль в метаболизме клеток играют гигантские полимерные макромолекулы – белки, нуклеиновые кислоты (ДНК и РНК), жирные кислоты и углеводы.

Вопросы

1. Перечислите малые органические молекулы цитоплазмы клеток.

2. Какова роль глюкозы в клетке?

3. Назовите вещества запаса растительной и животной клетки.

4. Какова роль аминокислот в клетке? В чем особенность их строения?

5. Что такое нуклеотид?

6. Перечислите и охарактеризуйте известные вам нуклеотиды.

7. Какую роль нуклеотиды выполняют в клетке?

Белки

Функции белков. Белки – это сложные органические соединения, состоящие из углерода, водорода, кислорода и азота. В некоторых белках содержится сера. Молекулы белков – цепи, построенные из аминокислот. Это макромолекулы. Их масса колеблется от нескольких тысяч до нескольких миллионов дальтон. В природных белках встречается двадцать различных аминокислот. Каждому белку свойственна своя особая последовательность аминокислот. Количество разнообразных белков в природе исчисляется десятками тысяч. В клетках на их долю приходится более 50 % от сухой массы. На клеточном уровне они выполняют много функций. Белки входят в состав всех клеточных органоидов, то есть выполняют структурные функции. В процессе метаболизма в клетке одновременно происходит несколько тысяч реакций. Каждая реакция контролируется специализированным белком – ферментом, который отвечает за точность и скорость проведения реакции. Работа ферментов очень специфична. Один фермент контролирует проведение одной реакции. Ферментативная функция белков – одна из важнейших функций в клетке. С помощью белков происходит транспорт веществ в организме и на клеточном уровне. Все знают белок гемоглобин, осуществляющий перемещение кислорода и углекислого газа в крови. Этот пример демонстрирует транспортную функцию белков. Невозможна жизнь организма без защиты от болезнетворных факторов внешней среды. Эту функцию выполняет иммунная система. В основе работы иммунной системы лежит взаимодействие белков с чужеродными химическими соединениями. Мы перечислили только самые важные функции белков. На самом деле их гораздо больше. Белки – важный компонент пищи животных. В организме они расщепляются до аминокислот, которые используются клетками для построения новых белков.

Вопросы

1. Какие мономеры входят в состав белков?

2. Какую долю по массе составляют белки в клетке?

3. Перечислите основные функции белков в клетках.

4. Почему говорят о специфичности работы ферментов?

5. Назовите белок, который выполняет транспортную функцию.

Строение белков

1. Аминокислоты. Пептидная связь. Аминокислоты, соединенные друг с другом последовательно, образуют первичную структуру белка, или полипептидной цепи.

Каждая аминокислота имеет группу – NH2, которая обладает свойствами основания, и группу – СООН, характерную для всех органических кислот. Следовательно, аминокислоты – амфотерные соединения, совмещающие свойства кислоты и основания. Они способны взаимодействовать друг с другом. Взаимодействуя с помощью рибосом, молекулы аминокислот образуют связи между углеродом кислотной группировки и азотом основной группы. Образовавшаяся ковалентная связь называется пептидной связью. Побочный продукт реакции – вода. Полипептидные цепочки из аминокислот обычно не ветвятся и не замыкаются в кольцо.

Аминокислоты имеют общий план строения, но отличаются друг от друга по строению радикала. Радикалы могут иметь простое или сложное строение, могут содержать серу: – CH2SH.

2. Вторичная структура. Белковая спираль. Громадная полипептидная цепь самопроизвольно складывается в пространстве за счет взаимодействия между остатками карбоксильных и аминогрупп аминокислотных остатков. Основа взаимодействия аминокислотных остатков – слабые водородные связи, многократно повторяющиеся вдоль длинной полипептидной цепи. В результате такого взаимодействия цепь приобретает вид спирали (a-структура) (рис. 3.1).

Рис. 3.1. Вторичная структура полипептида – α-спираль (по Албертс, Брей, Льюис и др., 1994).

3. Третичная и четвертичная структуры. Третичная структура образуется благодаря взаимодействию между собой сложных радикалов аминокислотных остатков в составе одного белка. Например, удаленные друг от друга в полипептидной цепи две аминокислоты, содержащие в составе радикалов серу, могут образовывать дисульфидные мостики, или S-S связи. Благодаря подобным взаимодействиям полипептидная спираль сворачивается и приобретает специфическую форму, например глобулы. Большинство белков глобулярные: общая формула их молекул более или менее сферическая. Известны и фибриллярные белки. Их молекулы в рабочем состоянии вытянуты в волокно. Пространственная конфигурация полипептидной молекулы играет важную роль в осуществлении ее функции.

Четвертичная структура белка представляет собой сложное функциональное объединение нескольких полипептидных молекул с третичной структурой. Например, молекула белка гемоглобина включает в себя четыре полипептида с третичной структурой: две молекулы a-гемоглобина и две молекулы b-гемоглобина. Кроме того, в центре этой сложной молекулы находится гетероциклическое соединение, в состав которого входит железо. Функциональная особенность гемоглобина, как и других белковых молекул, зависит от его пространственной конфигурации (рис. 3.2).

Рис. 3.2. Третичная и четвертичная структура молекулы гемоглобина.

Биосинтез белка осуществляется в цитоплазме всех живых клеток. Происходит этот процесс на рибосомах с участием матричных РНК (мРНК) и транспортных РНК (тРНК), которые образуются в ядре, как на матрице, на молекуле ДНК. Хотя молекулы ДНК не принимают непосредственного участия в биосинтезе белка на рибосомах, они играют в этом процессе ключевую роль. В них закодирована информация о последовательности аминокислот в молекуле белка. Главный постулат клеточной биологии: ДНК → РНК → белок. Чтобы разобраться в процессе биосинтеза белка, рассмотрим строение и функции нуклеиновых кислот, что важно для понимания работы клетки.

Вопросы

1. Какие химические элементы входят в состав молекул белков?

2. Из каких химических соединений образуются молекулы белков в клетке?

3. В чем значение водородных связей в белковых молекулах?

1 ... 3 4 5 6 7 8 9 10 11 12
Перейти на страницу:
Тут вы можете бесплатно читать книгу Цитология - Наталья Стволинская.
Комментарии