Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Биология » Цитология - Наталья Стволинская

Цитология - Наталья Стволинская

Читать онлайн Цитология - Наталья Стволинская

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 3 4 5 6 7 8 9 10 11 12
Перейти на страницу:

С помощью метода иммуноцитохимии изучены состав и расположение элементов цитоскелета клеток растений и животных, характерные особенности цитоскелета опухолевых клеток. С помощью этого метода научились выявлять индивидуальность хромосом человека, что необходимо при изучении развития патологий, а также в судебной медицине. Метод иммуноцитохимии позволил выявить на поверхности разнообразных клеток индивидуальные маркеры, что облегчило понимание многих патологических процессов, позволило выяснить, какие клеточные типы являются отправной точкой в развитии ряда болезней. Например, показана роль макрофагов и гладкомышечных клеток кровеносных сосудов в развитии атеросклероза.

Вопросы

1. Для чего используется метод иммуноцитохимии?

2. В чем суть метода?

3. Что вы знаете о люминесцентном микроскопе?

Электронная микроскопия

Во второй половине XX в. стал активно использоваться новый метод микроскопирования, дающий в 100 раз большее разрешение биологических объектов по сравнению со световой микроскопией, – электронная микроскопия.

В электронном микроскопе изображение строится с помощью узкого пучка электронов, с высокой скоростью проходящего через срез ткани и взаимодействующего с ним. Электроны могут поглощаться срезом или отклоняться от исходного направления, в результате чего узкий пучок электронов будет рассеиваться. В качестве устройств, формирующих и фокусирующих поток электронов до взаимодействия со срезом ткани и после этого, используются мощные кольцевые электромагниты. Напряжение в колонне электронного микроскопа достигает 100 000 вольт. Изображение строится на люминесцентном экране, который дает свечение при взаимодействии с электронами. Вместо отображения объекта на светящемся экране его изображение можно зафиксировать на фотопластинке, что дает возможность получить фотоснимок. Для изучения биологических объектов пришлось разрабатывать новые методы приготовления препаратов.

Фиксируют ткани для электронной микроскопии глутаровым альдегидом, который «сшивает» белковые молекулы, и дофиксируют тетраоксидом осмия, который стабилизирует двуслойные липидные мембраны и дополнительно фиксирует тканевые белки. Для получения срезов образцы ткани пропитывают полимерными смолами, которые затвердевают, образуя твердый пластмассовый блок. С него на специальном приборе ультрамикротоме стеклянными или алмазными ножами делают очень тонкие срезы толщиной 50–100 нм; с одной клетки можно приготовить 100–200 срезов. Затем срезы пропитывают солями тяжелых металлов (урана, свинца, фосфорно-вольфрамовой кислоты) для увеличения контрастности изображения. Готовые срезы помещают на тонкую медную сеточку, ячейки которой покрыты прозрачной полимерной пленкой, и просматривают в электронном микроскопе.

Кроме срезов, под электронным микроскопом изучают крупные биологические молекулы, структуру мембран, белковые глобулы, поверхность клеточных органоидов. При изучении поверхности органоидов или молекулярных комплексов добиваются контрастного изображения различными приемами. Обычно она достигается за счет напыления под углом к поверхности объекта тонкого слоя золота или платины. Толщина слоя золота на поверхности соответствует структурным особенностям объекта. Некоторые участки объекта будут иметь более толстый слой напыления, в других местах напыление будет отсутствовать из-за образования теневой зоны. Поток электронов в микроскопе направлен перпендикулярно к поверхности объекта, что обеспечит выявление светлых и темных участков на изучаемой поверхности, так как в зависимости от толщины слоя напыления металла степень поглощения электронов будет изменяться.

Электронная микроскопия обусловила значительный прогресс в развитии цитологии. Была описана тонкая структура ядра, всех цитоплазматических органоидов: эндоплазматического ретикулума, аппарата Гольджи, всевозможных вакуолей, митохондрий, пластид, центриолей (рис. 5.1). Именно с помощью электронной микроскопии было показано, что двуспиральная молекула ДНК, выделенная из бактерий, имеет форму кольца.

Электронная микроскопия, в которой изображение строится с помощью потока электронов, проходящих через объект, называется трансмиссионной. Ее разрешающая способность для биологических объектов 2 нм при увеличении ×100 000, что примерно соответствует диаметру двойной спирали ДНК.

Помимо трансмиссионной электронной микроскопии существует растровая (сканирующая) электронная микроскопия, когда изображение строится с помощью электронного луча, отраженного с поверхности изучаемого объекта. Такие электронные микроскопы называются сканирующими. В микроскопе образец сканируется узким пучком электронов. Когда луч электронов попадает на образец, то поверхность образца, на которую нанесен тонкий слой золота, испускает «вторичные электроны». Они регистрируются прибором и преобразуются в изображение на телевизионном экране. Максимальное разрешение сканирующего микроскопа меньше, чем трансмиссионного, и составляет 10 нм для биологических объектов, а увеличение ×20 000. С помощью сканирующих микроскопов изучают внутренние поверхности кровеносных сосудов, поверхности клеток и небольших структур. Сканирующий микроскоп дает объемное изображение.

Вопросы

1. Какие типы электронных микроскопов вы знаете? Каково их разрешение?

2. Какие структуры можно увидеть в ядре и цитоплазме с помощью трансмиссионного электронного микроскопа?

3. В чем состоит принцип построения изображения в электронном микроскопе?

4. В чем особенности приготовления препаратов для электронной микроскопии?

Метод авторадиографии

Метод авторадиографии используют для выяснения, в каких местах в клетке идет синтез тех или иных полимерных молекул, для изучения, куда переносятся синтезированные вещества. Иначе метод называют радиоавтографией. Он может использоваться применительно и к световой, и к электронной микроскопии. Метод позволяет обнаруживать в клетке биологические полимерные молекулы, меченые радиоактивными изотопами. Ядра радиоактивных изотопов нестабильны, подвергаются распаду, испуская заряженные частицы или γ-лучи. Экспериментатор регистрирует этот радиоактивный распад на фотопленке.

Обычно в кровь животному вводится мономер биополимера, в котором один из атомов водорода замещен на радиоактивный тритий. Например, в состав молекулы ДНК входит нуклеотид тимидин. В молекуле тимидина один из атомов водорода замещают на тритий. Тимидин, распространяясь с кровью, будет включаться в те клетки, где в данный момент идет репликация ДНК. На окрашенных срезах тканей можно будет выявить клетки, находящиеся в S-фазе клеточного цикла. Для этого на окрашенный срез в темноте наносят обычную фотоэмульсию, которая при хранении препаратов засвечивается под действием энергии, излучаемой изотопами. После проявления фотоэмульсии над клетками, находящимися в S-фазе клеточного цикла, появляются черные гранулы восстановленного серебра, образующиеся в фотоэмульсии.

Именно так в 60-е гг. XX в. было показано, что в составе нейронов головного мозга, в некоторых его отделах, возможна репликация ДНК. Но в то время было трудно представить, что в головном мозге млекопитающих присутствуют стволовые клетки, способные к делению. Тогда предположили, что репликация ДНК в нейронах головного мозга связана с процессом памяти.

Именно методом авторадиографии было показано, что ДНК всегда находится в ядре и никуда оттуда не выходит. РНК, напротив, синтезируется в ядре, а затем выходит в цитоплазму. Белок никогда не синтезируется в ядре. Место синтеза белка – рибосомы цитоплазмы. Отсюда белок может перемещаться и в ядро, и внутрь органелл цитоплазмы.

В заключение следует отметить, что каждый метод имеет свои преимущества и недостатки. Исследователь должен использовать несколько взаимодополняющих методов, чтобы сделать окончательный вывод.

Вопросы

1. Для чего используется метод авторадиографии?

2. В чем суть метода?

3. Какие результаты получены с помощью этого метода?

Фракционирование клеток

С середины XX в. цитологи получили возможность исследовать не только целые клетки, но и отдельные органоиды, выделенные из клеток в жизнеспособном состоянии. Для этого используется метод фракционирования клеток, основанный на дифференциальном центрифугировании.

Для получения образцов органоидов фрагменты ткани разрушают таким образом, чтобы клеточные структуры остались неповрежденными. С этой целью подбирают подходящие условия гомогенизации, т. е. разрушения клеток, подходящую среду для выделения клеточных структур, буфер для поддержания определенного рН, в процессе выделения поддерживают низкую температуру, близкую к нулю. В результате получают суспензию клеточных органоидов, которая содержит ядра, митохондрии, лизосомы, аппарат Гольджи, фрагменты эндоплазматического ретикулума, рибосомы и обрывки клеточных мембран. Суспензию начинают центрифугировать на специальных приборах – центрифугах. Разные органоиды осаждаются на дно пробирки при разных скоростях центрифугирования. Скорость оседания зависит от размера частицы и ее плотности. При низких скоростях центрифугирования в первую очередь осаждаются ядра. Получив осадок ядер, оставшуюся суспензию переливают в другую пробирку для следующего этапа центрифугирования. Осадок, состоящий из клеточных ядер, размешивают и используют в экспериментальной работе. Так повторяют несколько раз, увеличивая скорость и продолжительность центрифугирования. Самые высокие скорости центрифугирования необходимы для получения самых маленьких органелл – рибосом. Ядра осаждаются на дно пробирки при центрифугировании в течение двух минут с ускорением 2000 g. Осадок митохондрий получают через 30 минут центрифугирования с ускорением 15 000 g, а рибосомы собирают через 3 часа центрифугирования с ускорением 40 000 g.

1 ... 3 4 5 6 7 8 9 10 11 12
Перейти на страницу:
Тут вы можете бесплатно читать книгу Цитология - Наталья Стволинская.
Комментарии